The aim of this study was to examine the role of TLR2 molecule in pleural space during thoracoscopic talc pleurodesis period in patients with malignant pleural effusion. We analyzed TLR2 molecule in soluble form as well as on membrane of granulocytes in pleural fluid. Pleural fluid examination was done at three intervals during pleurodesis procedure: 1st—before the thoracoscopic procedure, 2nd—2 hours after the terminating thoracoscopic procedure with talc insufflation, 3rd—24 hours after the thoracoscopic procedure. We reported significant increase of soluble TLR2 molecule in pleural fluid effusion during talc pleurodesis from preoperative value. This increase was approximately 8-fold in the interval of 24 hours. The changes on granulocyte population were quite different. The mean fluorescent intensity of membrane TLR2 molecule examined by flow cytometry on granulocyte population significantly decreased after talc exposure with comparison to prethoracoscopic density. To estimate the prognostic value of TLR2 expression in pleural fluid patients were retrospectively classified into either prognostically favourable or unfavourable groups. Our results proved that patients with favourable prognosis had more than 3-fold higher soluble TLR2 level in pleural fluid early, 2 hours after talc pleurodesis intervention. 1. Introduction Pleural effusion is a frequent complication in many types of tumors [1]. Although there are more than 50 recognized causes of pleural effusion formation, malignancy, infection, heart failure, and pulmonary embolism are the most common reasons for pleural effusion development [2, 3]. Normally, the fluid volume is small in pleural space. It contains approximately 1?mL of fluid with the absence of inflammatory cells [2, 4]. Inflammatory changes can be initiated by penetration of foreign cells (tumor cells or microbes), proteins, or air as well as mechanical invasion [4]. Pleural effusions are either transudates or exudates reflecting the way of origin, detectable by biochemical analysis mostly by pleural fluid protein concentration and lactate dehydrogenase (LDH) level [3, 5]. The malignant pleural effusions are mainly of exudative character with hallmarks of an inflammatory process but exact mechanism of pleural fluid accumulation is not fully understood [4, 6, 7]. The treatment of malignant pleural effusion is always local and palliative [1]. This therapy is based on application of sclerosing agent into the pleural cavity to achieve a symphysis between the visceral and parietal pleura [8]. This approach is called chemical pleurodesis
References
[1]
G. Lombardi, F. Zustovich, M. O. Nicoletto, M. Donach, G. Artioli, and D. Pastorelli, “Diagnosis and treatment of malignant pleural effusion: a systematic literature review and new approaches,” American Journal of Clinical Oncology, vol. 33, no. 4, pp. 420–423, 2010.
[2]
L. Idris, N. Ranaweera, and D. Laws, “Investigation of pleural effusions,” Acute Medicine, vol. 10, no. 4, pp. 216–220, 2011.
[3]
J. M. Porcel and R. W. Light, “Diagnostic approach to pleural effusion in adults,” American Family Physician, vol. 73, no. 7, pp. 1211–1220, 2006.
[4]
M. A. Jantz and V. B. Antony, “Pathophysiology of the pleura,” Respiration, vol. 75, no. 2, pp. 121–133, 2008.
[5]
J. T. Huggins, P. Doelken, and S. A. Sahn, “The unexpandable lung,” F1000 Medicine Reports, vol. 2, no. 1, p. 77, 2010.
[6]
J. M. Porcel, “Pearls and myths in pleural fluid analysis,” Respirology, vol. 16, no. 1, pp. 44–52, 2011.
[7]
M. H. Uzbeck, F. A. Almeida, M. G. Sarkiss et al., “Management of malignant pleural effusions,” Advances in Therapy, vol. 27, no. 6, pp. 334–347, 2010.
[8]
F. Rodriguez-Panadero and A. Montes-Worboys, “Mechanisms of pleurodesis,” Respiration, vol. 83, no. 2, pp. 91–98, 2012.
[9]
J. P. Janssen, G. Collier, P. Astoul et al., “Safety of pleurodesis with talc poudrage in malignant pleural effusion: a prospective cohort study,” The Lancet, vol. 369, no. 9572, pp. 1535–1539, 2007.
[10]
V. B. Antony, N. Nasreen, K. A. Mohammed et al., “Talc pleurodesis: basic fibroblast growth factor mediates pleural fibrosis,” Chest, vol. 126, no. 5, pp. 1522–1528, 2004.
[11]
M. M. van den Heuvel, H. J. M. Smit, S. B. Barbierato, C. E. G. Havenith, R. H. J. Beelen, and P. E. Postmus, “Talc-induced inflammation in the pleural cavity,” European Respiratory Journal, vol. 12, no. 6, pp. 1419–1423, 1998.
[12]
Y. C. Gary Lee, D. Melkerneker, P. J. Thompson, R. W. Light, and K. B. Lane, “Transforming growth factor β induces vascular endothelial growth factor elaboration from pleural mesothelial cells in vivo and in vitro,” American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 1, pp. 88–94, 2002.
[13]
N. Nasreen, D. L. Hartman, K. A. Mohammed, and V. B. Antony, “Talc-induced expression of C-C and C-X-C chemokines and intercellular adhesion molecule-1 in mesothelial cells,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 3, pp. 971–978, 1998.
[14]
A. Montes-Worboys, J. A. Rodriguez-Portal, E. Arellano-Orden, J. Digón-Pereiras, and F. Rodriguez-Panadero, “Interleukin-8 activates coagulation and correlates with survival after talc pleurodesis,” European Respiratory Journal, vol. 35, no. 1, pp. 160–166, 2010.
[15]
E. Marchi, F. S. Vargas, M. M. Acencio, L. Antonangelo, E. H. Genofre, and L. R. Teixeira, “Evidence that mesothelial cells regulate the acute inflammatory response in talc pleurodesis,” European Respiratory Journal, vol. 28, no. 5, pp. 929–932, 2006.
[16]
M. M. P. Acencio, F. S. Vargas, E. Marchi et al., “Pleural mesothelial cells mediate inflammatory and profibrotic responses in talc-induced pleurodesis,” Lung, vol. 185, no. 6, pp. 343–348, 2007.
[17]
S. Idell, “The pathogenesis of pleural space loculation and fibrosis,” Current Opinion in Pulmonary Medicine, vol. 14, no. 4, pp. 310–315, 2008.
[18]
K. Takeda and S. Akira, “Toll-like receptors in innate immunity,” International Immunology, vol. 17, no. 1, pp. 1–14, 2005.
[19]
C. Erridge, “Endogenous ligands of TLR2 and TLR4: agonists or assistants?” Journal of Leukocyte Biology, vol. 87, no. 6, pp. 989–999, 2010.
[20]
A. M. Piccinini and K. S. Midwood, “DAMPening inflammation by modulating TLR signalling,” Mediators of Inflammation, vol. 2010, Article ID 672395, 21 pages, 2010.
[21]
Y. C. Tyan, H. Y. Wu, W. C. Su, P. W. Chen, and P. C. Liao, “Proteomic analysis of human pleural effusion,” Proteomics, vol. 5, no. 4, pp. 1062–1074, 2005.
[22]
K. K. Mayer, “Direct lymphatic connections from the lower lobes of the lung to the abdomen,” The Journal of Thoracic Surgery, vol. 35, no. 6, pp. 726–733, 1958.
[23]
M. Kaczmarek, A. Nowicka, M. Koz?owska, J. Zurawski, H. Batura-Gabryel, and J. Sikora, “Evaluation of the phenotype pattern of macrophages isolated from malignant and non-malignant pleural effusions,” Tumor Biology, pp. 1–10, 2011.
[24]
I. Zahid, T. Routledge, A. Bille, and M. Scarci, “Best evidence topic-thoracic oncologic: what is the best treatment for malignant pleural effusions?” Interactive Cardiovascular and Thoracic Surgery, vol. 12, no. 5, pp. 818–823, 2011.
[25]
S. Borrello, C. Nicolò, G. Delogu, F. Pandolfi, and F. Ria, “TLR2: a crossroads between infections and autoimmunity?” International Journal of Immunopathology and Pharmacology, vol. 24, no. 3, pp. 549–556, 2011.
[26]
J. Fan, “TLR cross-talk mechanism of hemorrhagic shock-primed pulmonary neutrophil infiltration,” The Open Critical Care Medicine Journal, vol. 2, pp. 1–8, 2010.
[27]
X. Chen, M. Zhang, X. Zhu et al., “Engagement of toll-like receptor 2 on CD4+ T cells facilitates local immune responses in patients with tuberculous pleurisy,” Journal of Infectious Diseases, vol. 200, no. 3, pp. 399–408, 2009.
[28]
T. Hussain, N. Nasreen, Y. Lai, B. F. Bellew, V. B. Antony, and K. A. Mohammed, “Innate immune responses in murine pleural mesothelial cells: toll-like receptor-2 dependent induction of β-defensin-2 by staphylococcal peptidoglycan,” American Journal of Physiology-Lung Cellular and Molecular Physiology, vol. 295, no. 3, pp. L461–L470, 2008.
[29]
L. C. Chang, C. C. Hua, C. M. Chu, B. Y. Chiang, H. J. Chen, and C. C. Yu, “Differential mRNA expression of Toll-like receptors and their adaptors in pleural effusions,” Respirology, vol. 14, no. 8, pp. 1194–1199, 2009.
[30]
H. B. Yang, K. Q. Xie, J. M. Deng, and S. M. Qin, “Expression of soluble toll-like receptors in pleural effusions,” Chinese Medical Journal, vol. 123, no. 16, pp. 2225–2230, 2010.
[31]
J. Fan, M. Xiang, and J. Fan, “Association of toll-like receptor signaling and reactive oxygen species: a potential therapeutic target for posttrauma acute lung injury,” Mediators of Inflammation, vol. 2010, Article ID 916425, 8 pages, 2010.
[32]
B. N. Lambrecht, M. Kool, M. A. Willart, and H. Hammad, “Mechanism of action of clinically approved adjuvants,” Current Opinion in Immunology, vol. 21, no. 1, pp. 23–29, 2009.
[33]
R. R. Razonable, M. Henault, and C. V. Paya, “Stimulation of toll-like receptor 2 with bleomycin results in cellular activation and secretion of pro-inflammatory cytokines and chemokines,” Toxicology and Applied Pharmacology, vol. 210, no. 3, pp. 181–189, 2006.
[34]
I. Radic, I. Vucak, J. Milosevic, A. Marusic, S. Vukicevic, and M. Marusic, “Immunosuppression induced by talc granulomatosis in the rat,” Clinical and Experimental Immunology, vol. 73, no. 2, pp. 316–321, 1988.
[35]
R. Davies, J. W. Skidmore, D. M. Griffiths, and C. B. Moncrieff, “Cytotoxicity of talc for macrophages in vitro,” Food and Chemical Toxicology, vol. 21, no. 2, pp. 201–207, 1983.
[36]
J. T. Hoffeld, “Inhibition of lymphocyte proliferation and antibody production in vitro by silica, talc, Bentonite or Corynebacterium parvum: involvement of peroxidative processes,” European Journal of Immunology, vol. 13, no. 5, pp. 364–369, 1983.
[37]
T. H. Flo, O. Halaas, S. Torp et al., “Differential expression of Toll-like receptor 2 in human cells,” Journal of Leukocyte Biology, vol. 69, no. 3, pp. 474–481, 2001.
[38]
M. J. Acorci-Valério, A. P. Bordon-Graciani, L. A. Dias-Melicio, M. de Assis Golim, E. Nakaira-Takahagi, and A. M. de Campos Soares, “Role of TLR2 and TLR4 in human neutrophil functions against paracoccidioides brasiliensis,” Scandinavian Journal of Immunology, vol. 71, no. 2, pp. 99–108, 2010.
[39]
M. Hidaka and K. Fukuzawa, “Down-modulation of toll-like receptor 2 expression on granulocytes and suppression of interleukin-8 production due to in vitro treatment with cellulose acetate beads,” Therapeutic Apheresis and Dialysis, vol. 15, no. 6, pp. 572–578, 2011.
[40]
J. Krejsek, P. Kunes, M. Kolackova et al., “Expression of Toll-like receptors 2 and 4 on innate immunity cells modulated by cardiac surgical operation,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 68, no. 8, pp. 749–758, 2008.