Background. The presence of anti-SSA/Ro and anti-SSB/La antibodies during pregnancy is associated with fetal congenital heart block (CHB), which is primarily diagnosed through fetal echocardiography. Conclusive information about the complete electrophysiology of the fetal cardiac conducting system is still lacking. In addition to echocardiography, fetal magnetocardiography (fMCG) can be used. fMCG is the magnetic analogue of the fetal electrocardiogram (ECG). Patients and Methods. Forty-eight pregnant women were enrolled in an observational study; 16 of them tested positive for anti-SSA/Ro and anti-SSB/La antibodies. In addition to routine fetal echocardiography, fMCG was used. Fetal cardiac time intervals (fCTIs) were extracted from the magnetic recordings by predefined procedures. ECGs in the neonates of the study group were performed within the first month after delivery. Results. The PQ segment of the fCTI was significantly prolonged in the study group ( ), representing a delay of the electrical impulse in the atrioventricular (AV) node. Other fCTIs were within normal range. None of the anti-SSA/Ro and/or anti-SSB/La fetuses progressed to a more advanced heart block during pregnancy or after birth. Conclusion. The study identified a low-risk population within antibody positive mothers, where PQ segment prolongation is associated with a lack of progression of the disease. 1. Introduction Fetal exposure to anti-SSA/Ro and anti-SSB/La antibodies is associated with the development of congenital heart block (CHB). The incidence is about 2% in primigravid mothers. The risk is five to tenfold higher in women who previously had an affected child with either CHB or a neonatal lupus rash [1, 2]. Fetuses with CHB carry high rates of mortality (20%) and morbidity (>60% of the surviving children require a permanent pacemaker in adulthood) [3, 4]. Risk factors associated with a poor outcome are gestation <20 weeks, ventricular rate ≤50?bpm, hydrops, and impaired left ventricular function [4, 5]. In addition to the expected course of the disease, life-threatening cardiomyopathy is also found in the offspring in 10%–15% of cases and can occur in utero or postnatally [6]. The pathogenesis of the disease is presumed to involve transplacental maternal IgG autoantibodies, which cause an atrioventricular (AV) delay. However, the first manifestation may also be sinus node dysfunction, atrial or ventricular ectopies or bundle branch blocks, but also junctional ectopic tachycardia or ventricular tachycardia [7]. Regarding the pathogenesis of these variable expressions of
References
[1]
J. P. Buyon and R. M. Clancy, “Neonatal lupus,” in Dubois' Lupus Erythemathodes, D. J. Wallace and B. H. Hahn, Eds., pp. 1058–1080, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 7th edition, 2006.
[2]
D. M. Friedman, C. Llanos, P. M. Izmirly et al., “Evaluation of fetuses in a study of intravenous immunoglobulin as preventive therapy for congenital heart block: results of a multicenter, prospective, open-label clinical trial,” Arthritis and Rheumatism, vol. 62, no. 4, pp. 1138–1146, 2010.
[3]
J. P. Buyon, R. Hiebert, J. Copel et al., “Autoimmune-associated congenital heart block: demographics, mortality, morbidity and recurrence rates obtained from a national neonatal lupus registry,” Journal of the American College of Cardiology, vol. 31, no. 7, pp. 1658–1666, 1998.
[4]
P. M. Izmirly, A. Saxena, M. Y. Kim et al., “Maternal and fetal factors associated with mortality and morbidity in a multi-racial/ethnic registry of anti-SSA/Ro-associated cardiac neonatal lupus,” Circulation, vol. 124, no. 18, pp. 1927–1935, 2011.
[5]
H. Eliasson, S. E. Sonesson, G. Sharland et al., “Isolated atrioventricular block in the fetus: a retrospective, multinational, multicenter study of 175 patients,” Circulation, vol. 124, pp. 1919–1926, 2011.
[6]
E. T. Jaeggi, R. M. Hamilton, E. D. Silverman, S. A. Zamora, and L. K. Hornberger, “Outcome of children with fetal, neonatal or childhood diagnosis of isolated congenital atrioventricular block: a single institution's experience of 30 years,” Journal of the American College of Cardiology, vol. 39, no. 1, pp. 130–137, 2002.
[7]
B. F. Cuneo, J. F. Strasburger, A. Niksch, M. Ovadia, and R. T. Wakai, “An expanded phenotype of maternal SSASSB antibody-associated fetal cardiac disease,” Journal of Maternal-Fetal and Neonatal Medicine, vol. 22, no. 3, pp. 233–238, 2009.
[8]
Y. Qu, G. Baroudi, Y. Yue, and M. Boutjdir, “Novel molecular mechanism involving α1D (Cav1.3) L-type calcium channel in autoimmune-associated sinus bradycardia,” Circulation, vol. 111, no. 23, pp. 3034–3041, 2005.
[9]
R. M. Clancy, P. J. Neufing, P. Zheng et al., “Impaired clearance of apoptotic cardiocytes is linked to anti-SSA/Ro and -SSB/La antibodies in the pathogenesis of congenital heart block,” Journal of Clinical Investigation, vol. 116, no. 9, pp. 2413–2422, 2006.
[10]
H. Zhao, B. F. Cuneo, J. F. Strasburger, J. C. Huhta, N. L. Gotteiner, and R. T. Wakai, “Electrophysiological characteristics of fetal atrioventricular block,” Journal of the American College of Cardiology, vol. 51, no. 1, pp. 77–84, 2008.
[11]
J. F. Strasburger and R. T. Wakai, “Fetal cardiac arrhythmia detection and in utero therapy,” Nature Reviews Cardiology, vol. 7, no. 5, pp. 277–290, 2010.
[12]
P. Van Leeuwen, S. Schiermeier, S. Lange et al., “Gender-related changes in magnetocardiographically determined fetal cardiac time intervals in intrauterine growth retardation,” Pediatric Research, vol. 59, no. 6, pp. 820–824, 2006.
[13]
H. Preissl, C. L. Lowery, and H. Eswaran, “Fetal magnetoencephalography: current progress and trends,” Experimental Neurology, vol. 190, no. 1, pp. S28–S36, 2004.
[14]
J. McCubbin, S. E. Robinson, R. Cropp et al., “Optimal reduction of MCG in fetal MEG recordings,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 8, pp. 1720–1724, 2006.
[15]
J. Vrba, S. E. Robinson, J. McCubbin et al., “Fetal MEG redistribution by projection operators,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 7, pp. 1207–1218, 2004.
[16]
S. M. Robinson, T. Wheeler, M. C. Hayes, D. J. P. Barker, and C. Osmond, “Fetal heart rate and intrauterine growth,” British Journal of Obstetrics and Gynaecology, vol. 98, no. 12, pp. 1223–1227, 1991.
[17]
M. K. Park and W. G. Gunteroth, How To Read Pediatric ECG'S, Mosby, St. Louis, Mo, USA, 3rd edition, 1993.
[18]
A. Ambrosi and M. Wahren-Herlenius, “Congenital heart block: evidence for a pathogenic role of maternal autoantibodies,” Arthritis Research & Therapy, vol. 14, no. 2, p. 208, 2012.
[19]
M. Boutjdir, L. Chen, Z. H. Zhang, C. E. Tseng, N. El-Sherif, and J. P. Buyon, “Serum and immunoglobulin G from the mother of a child with congenital heart block induce conduction abnormalities and inhibit L-type calcium channels in a rat heart model,” Pediatric Research, vol. 44, no. 1, pp. 11–19, 1998.
[20]
M. Wahren-Herlenius and S. E. Sonesson, “Specificity and effector mechanisms of autoantibodies in congenital heart block,” Current Opinion in Immunology, vol. 18, no. 6, pp. 690–696, 2006.
[21]
S. E. Sonesson, S. Salomonsson, L. A. Jacobsson, K. Bremme, and M. Wahren-Herlenius, “Signs of first-degree heart block occur in one-third of fetuses of pregnant women with anti-SSA/Ro 52-kd antibodies,” Arthritis and Rheumatism, vol. 50, no. 4, pp. 1253–1261, 2004.