全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Role of Complement in Multiorgan Failure

DOI: 10.1155/2012/962927

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multiorgan failure (MOF) represents the leading cause of death in patients with sepsis and systemic inflammatory response syndrome (SIRS) following severe trauma. The underlying immune response is highly complex and involves activation of the complement system as a crucial entity of innate immunity. Uncontrolled activation of the complement system during sepsis and SIRS with in excessive generation of complement activation products contributes to an ensuing dysfunction of various organ systems. In the present review, mechanisms of the inflammatory response in the development of MOF in sepsis and SIRS with particular focus on the complement system are discussed. 1. Introduction In the 1970s, a syndrome of progressive, sequentially dysfunctional organ systems has been firstly characterized, eventually referred to as multiorgan failure (MOF) [1, 2]. As a predominant underlying condition, sepsis and sepsis-associated MOF represent one of the leading causes of death of hospitalized patients with reported morality rates ranging from 28% to 56% [3, 4]. Likewise, severe trauma and trauma-related multiorgan failure remain the leading cause of death in people below the age of 40 [5, 6]. The conception of organ failure has changed over the years and various scoring systems for the classification and diagnosis of MOF exist all of which attempt to quantify the degree of organ failure [7–9]. Currently, MOF is regarded as a continuous process of varying levels of organ failure rather than an all-or-none event [10]. To characterize MOF, six different organ systems are regarded as “key organs”: lungs, cardiovascular system, kidneys, liver, coagulation system, and central nervous system. Depending on the severity and various predisposing conditions, the initial insult (tissue trauma, infection) can induce a systemic host response that is characterized by the release of pro- and anti-inflammatory cytokines and metabolites (e.g., reactive oxygen (ROS) and nitrogen species (NOS)), activation of plasmatic cascade systems, such as the complement and the coagulation systems, and the appearance of acute phase proteins as well as hormonal and neuronal mediators [11–13]. Imbalanced systemic immune responses can ultimately lead to accumulation of leukocytes, disseminated intravascular coagulation (DIC), and microcirculatory dysfunction with subsequent apoptosis and necrosis of parenchymal cells, finally resulting in the development of MOF [12, 14, 15]. As a central entity of innate immunity, the complement system is immediately activated after trauma or infection in order to

References

[1]  A. E. Baue, “Multiple, progressive, or sequential systems failure. A syndrome of the 1970s,” Archives of Surgery, vol. 110, no. 7, pp. 779–781, 1975.
[2]  V. D. Mayr, M. W. Dünser, V. Greil et al., “Causes of death and determinants of outcome in critically ill patients,” Critical Care, vol. 10, no. 6, article R154, 2006.
[3]  J. Blanco, A. Muriel-Bombín, V. Sagredo et al., “Incidence, organ dysfunction and mortality in severe sepsis: a Spanish multicentre study,” Critical Care, vol. 12, no. 6, article R158, 2008.
[4]  G. S. Martin, D. M. Mannino, S. Eaton, and M. Moss, “The epidemiology of sepsis in the United States from 1979 through 2000,” The New England Journal of Medicine, vol. 348, no. 16, pp. 1546–1554, 2003.
[5]  D. Demetriades, J. Murray, K. Charalambides et al., “Trauma fatalities: time and location of hospital deaths,” Journal of the American College of Surgeons, vol. 198, no. 1, pp. 20–26, 2004.
[6]  A. Sauaia, F. A. Moore, E. E. Moore et al., “Epidemiology of trauma deaths: a reassessment,” Journal of Trauma, vol. 38, no. 2, pp. 185–193, 1995.
[7]  A. E. Baue, “MOF, MODS, and SIRS: what is in a name or an acronym?” Shock, vol. 26, no. 5, pp. 438–449, 2006.
[8]  J. C. Marshall, D. J. Cook, N. V. Christou, G. R. Bernard, C. L. Sprung, and W. J. Sibbald, “Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome,” Critical Care Medicine, vol. 23, no. 10, pp. 1638–1652, 1995.
[9]  J. L. Vincent, R. Moreno, J. Takala et al., “The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure,” Intensive Care Medicine, vol. 22, no. 7, pp. 707–710, 1996.
[10]  R. M. Durham, J. J. Moran, J. E. Mazuski, M. J. Shapiro, A. E. Baue, and L. M. Flint, “Multiple Organ Failure in Trauma Patients,” Journal of Trauma, vol. 55, no. 4, pp. 608–616, 2003.
[11]  M. Keel and O. Trentz, “Pathophysiology of polytrauma,” Injury, vol. 36, no. 6, pp. 691–709, 2005.
[12]  R. S. Hotchkiss and I. E. Karl, “The pathophysiology and treatment of sepsis,” The New England Journal of Medicine, vol. 348, no. 2, pp. 138–150, 2003.
[13]  D. Rittirsch, M. A. Flierl, and P. A. Ward, “Harmful molecular mechanisms in sepsis,” Nature Reviews Immunology, vol. 8, no. 10, pp. 776–787, 2008.
[14]  R. S. Hotchkiss, P. E. Swanson, B. D. Freeman et al., “Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction,” Critical Care Medicine, vol. 27, no. 7, pp. 1230–1251, 1999.
[15]  T. Goya, T. Morisaki, and M. Torisu, “Immunologic assessment of host defense impairment in patients with septic multiple organ failure: relationship between complement activation and changes in neutrophil function,” Surgery, vol. 115, no. 2, pp. 145–155, 1994.
[16]  F. Hecke, U. Schmidt, A. Kola, W. Bautsch, A. Klos, and J. K?hl, “Circulating complement proteins in multiple trauma patients—correlation with injury severity, development of sepsis, and outcome,” Critical Care Medicine, vol. 25, no. 12, pp. 2015–2024, 1997.
[17]  E. Fosse, J. Pillgram-Larsen, J. L. Svennevig et al., “Complement activation in injured patients occurs immediately and is dependent on the severity of the trauma,” Injury, vol. 29, no. 7, pp. 509–514, 1998.
[18]  H. J. Kang, J. H. Kim, E. H. Lee, Y. K. Lee, M. Hur, and K. M. Lee, “Change of complement system predicts the outcome of patients with severe thermal injury,” Journal of Burn Care and Rehabilitation, vol. 24, no. 3, pp. 148–153, 2003.
[19]  A. Bengtson and M. Heideman, “Altered anaphylatoxin activity during induced hypoperfusion in acute and elective abdominal aortic surgery,” Journal of Trauma, vol. 26, no. 7, pp. 631–637, 1986.
[20]  H. Nakae, S. Endo, K. Inada, and M. Yoshida, “Chronological changes in the complement system in sepsis,” Surgery Today, vol. 26, no. 4, pp. 225–229, 1996.
[21]  M. T. Ganter, K. Brohi, M. J. Cohen et al., “Role of the alternative pathway in the early complement activation following major trauma,” Shock, vol. 28, no. 1, pp. 29–34, 2007.
[22]  A. M. Burk, M. Martin, M. A. Flierl, D. Rittirsch, M. Helm, et al., “Early complementopathy after multiple injuries in humans,” Shock, vol. 37, pp. 348–354, 2012.
[23]  T. Zimmermann, Z. Laszik, S. Nagy, J. Kaszaki, and F. Joo, “The role of the complement system in the pathogenesis of multiple organ failure in shock,” Progress in Clinical and Biological Research, vol. 308, pp. 291–297, 1989.
[24]  M. Huber-Lang, V. J. Sarma, K. T. Lu et al., “Role of C5a in multiorgan failure during sepsis,” Journal of Immunology, vol. 166, no. 2, pp. 1193–1199, 2001.
[25]  B. J. Czermak, V. Sarma, C. L. Pierson et al., “Protective effects of C5a blockade in sepsis,” Nature Medicine, vol. 5, no. 7, pp. 788–792, 1999.
[26]  D. Rittirsch, M. A. Flierl, B. A. Nadeau et al., “Functional roles for C5a receptors in sepsis,” Nature Medicine, vol. 14, no. 5, pp. 551–557, 2008.
[27]  I. J. Laudes, J. C. Chu, S. Sikranth et al., “Anti-C5a ameliorates coagulation/fibrinolytic protein changes in a rat model of sepsis,” American Journal of Pathology, vol. 160, no. 5, pp. 1867–1875, 2002.
[28]  M. Huber-Lang, J. V. Sarma, F. S. Zetoune et al., “Generation of C5a in the absence of C3: a new complement activation pathway,” Nature Medicine, vol. 12, no. 6, pp. 682–687, 2006.
[29]  M. M. Markiewski, B. Nilsson, K. N. Ekdahl, T. E. Mollnes, and J. D. Lambris, “Complement and coagulation: strangers or partners in crime?” Trends in Immunology, vol. 28, no. 4, pp. 184–192, 2007.
[30]  U. Amara, D. Rittirsch, M. Flierl et al., “Interaction between the coagulation and complement system,” Advances in Experimental Medicine and Biology, vol. 632, pp. 71–79, 2008.
[31]  K. B. Reid and R. R. Porter, “The proteolytic activation systems of complement,” Annual Review of Biochemistry, vol. 50, pp. 433–464, 1981.
[32]  H. J. Muller-Eberhard, “Molecular organization and function of the complement system,” Annual Review of Biochemistry, vol. 57, pp. 321–347, 1988.
[33]  T. Fujita, “Evolution of the lectin—complement pathway and its role in innate immunity,” Nature Reviews Immunology, vol. 2, no. 5, pp. 346–353, 2002.
[34]  U. Amara, M. A. Flierl, D. Rittirsch et al., “Molecular intercommunication between the complement and coagulation systems,” Journal of Immunology, vol. 185, no. 9, pp. 5628–5636, 2010.
[35]  M. Huber-Lang, E. M. Younkin, J. V. Sarma et al., “Generation of C5a by phagocytic cells,” American Journal of Pathology, vol. 161, no. 5, pp. 1849–1859, 2002.
[36]  W. Vogt, “Cleavage of the fifth component of complement and generation of a functionally active C5b6-like complex by human leukocyte elastase,” Immunobiology, vol. 201, no. 3-4, pp. 470–477, 2000.
[37]  C. L. Sprung, D. R. Schultz, and E. Marcial, “Complement activation in septic shock patients,” Critical Care Medicine, vol. 14, no. 6, pp. 525–528, 1986.
[38]  J. Charchaflieh, J. Wei, G. Labaze, Y. J. Hou, B. Babarsh, et al., “The role of complement system in septic shock,” Clinical and Developmental Immunology, vol. 2012, Article ID 407324, 8 pages, 2012.
[39]  Y. M. Bilgin, A. Brand, S. P. Berger, M. R. Daha, and A. Roos, “Mannose-binding lectin is involved in multiple organ dysfunction syndrome after cardiac surgery: effects of blood transfusions,” Transfusion, vol. 48, no. 4, pp. 601–608, 2008.
[40]  D. P. Eisen, M. M. Dean, P. Thomas et al., “Low mannose-binding lectin function is associated with sepsis in adult patients,” FEMS Immunology and Medical Microbiology, vol. 48, no. 2, pp. 274–282, 2006.
[41]  B. P. Morgan and P. Gasque, “Expression of complement in the brain: role in health and disease,” Immunology Today, vol. 17, no. 10, pp. 461–466, 1996.
[42]  M. Levi-Strauss and M. Mallat, “Primary cultures of murine astrocytes produce C3 and factor B, two components of the alternative pathway of complement activation,” Journal of Immunology, vol. 139, no. 7, pp. 2361–2366, 1987.
[43]  M. Hosokawa, A. Klegeris, J. Maguire, and P. L. McGeer, “Expression of complement messenger RNAs and proteins by human oligodendroglial cells,” GLIA, vol. 42, no. 4, pp. 417–423, 2003.
[44]  O. I. Schmidt, C. E. Heyde, W. Ertel, and P. F. Stahel, “Closed head injury—an inflammatory disease?” Brain Research Reviews, vol. 48, no. 2, pp. 388–399, 2005.
[45]  M. A. Flierl, D. Rittirsch, M. S. Huber-Lang, and P. F. Stahel, “Pathophysiology of septic encephalopathy—an unsolved puzzle,” Critical Care, vol. 14, no. 3, article 165, 2010.
[46]  P. J. Lindsberg, J. ?hman, T. Lehto et al., “Complement activation in the central nervous system following blood- brain barrier damage in man,” Annals of Neurology, vol. 40, no. 4, pp. 587–596, 1996.
[47]  P. F. Stahel, M. C. Morganti-Kossmann, and T. Kossmann, “The role of the complement system in traumatic brain injury,” Brain Research Reviews, vol. 27, no. 3, pp. 243–256, 1998.
[48]  N. J. Lynch, C. L. Willis, C. C. Nolan et al., “Microglial activation and increased synthesis of complement component C1q precedes blood-brain barrier dysfunction in rats,” Molecular Immunology, vol. 40, no. 10, pp. 709–716, 2004.
[49]  S. J. Weiss, “Tissue destruction by neutrophils,” The New England Journal of Medicine, vol. 320, no. 6, pp. 365–376, 1989.
[50]  M. A. Flierl, P. F. Stahel, D. Rittirsch et al., “Inhibition of complement C5a prevents breakdown of the blood-brain barrier and pituitary dysfunction in experimental sepsis,” Critical Care, vol. 13, no. 1, article R12, 2009.
[51]  K. L. Keeling, R. R. Hicks, J. Mahesh, B. B. Billings, and G. J. Kotwal, “Local neutrophil influx following lateral fluid-percussion brain injury in rats is associated with accumulation of complement activation fragments of the third component (C3) of the complement system,” Journal of Neuroimmunology, vol. 105, no. 1, pp. 20–30, 2000.
[52]  I. Leinhase, V. M. Holers, J. M. Thurman et al., “Reduced neuronal cell death after experimental brain injury in mice lacking a functional alternative pathway of complement activation,” BMC Neuroscience, vol. 7, article no. 55, 2006.
[53]  I. Leinhase, M. Rozanski, D. Harhausen et al., “Inhibition of the alternative complement activation pathway in traumatic brain injury by a monoclonal anti-factor B antibody: a randomized placebo-controlled study in mice,” Journal of Neuroinflammation, vol. 4, article 13, 2007.
[54]  I. Farkas, L. Baranyi, M. Takahashi et al., “A neuronal C5a receptor and an associated apoptotic signal transduction pathway,” Journal of Physiology, vol. 507, no. 3, pp. 679–687, 1998.
[55]  S. Nataf, P. F. Stahel, N. Davoust, and S. R. Barnum, “Complement anaphylatoxin receptors on neurons: new tricks for old receptors?” Trends in Neurosciences, vol. 22, no. 9, pp. 397–402, 1999.
[56]  S. K. Singhrao, J. W. Neal, N. K. Rushmere, B. P. Morgan, and P. Gasque, “Spontaneous classical pathway activation and deficiency of membrane regulators render human neurons susceptible to complement lysis,” American Journal of Pathology, vol. 157, no. 3, pp. 905–918, 2000.
[57]  H. Osaka, P. Mukherjee, P. S. Aisen, and G. M. Pasinetti, “Complement-derived anaphylatoxin C5a protects against glutamate-mediated neurotoxicity,” Journal of Cellular Biochemistry, vol. 73, pp. 303–311, 1999.
[58]  K. Heese, C. Hock, and U. Otten, “Inflammatory signals induce neurotrophin expression in human microglial cells,” Journal of Neurochemistry, vol. 70, no. 2, pp. 699–707, 1998.
[59]  C. J. Clark, W. H. Reid, A. J. Pollock, D. Campbell, and C. Gemmell, “Role of pulmonary alveolar macrophage activation in acute lung injury after burns and smoke inhalation,” The Lancet, vol. 2, no. 8616, pp. 872–874, 1988.
[60]  T. O. White, P. J. Jenkins, R. D. Smith, C. W. J. Cartlidge, and C. M. Robinson, “The epidemiology of posttraumatic adult respiratory distress syndrome,” Journal of Bone and Joint Surgery A, vol. 86, no. 11, pp. 2366–2376, 2004.
[61]  G. D. Rubenfeld, E. Caldwell, E. Peabody et al., “Incidence and outcomes of acute lung injury,” The New England Journal of Medicine, vol. 353, no. 16, pp. 1685–1693, 2005.
[62]  G. Hetland, E. Johnson, and U. Aasebo, “Human alveolar macrophages synthesize the functional alternative pathway of complement and active C5 and C9 in vitro,” Scandinavian Journal of Immunology, vol. 24, no. 5, pp. 603–608, 1986.
[63]  R. C. Strunk, D. M. Eidlen, and R. J. Mason, “Pulmonary alveolar type II epithelial cells synthesize and secrete proteins of the classical and alternative complement pathways,” Journal of Clinical Investigation, vol. 81, no. 5, pp. 1419–1426, 1988.
[64]  B. L. Rothman, M. Merrow, A. Despins, T. Kennedy, and D. L. Kreutzer, “Effect of lipopolysaccharide on C3 and C5 production by human lung cells,” Journal of Immunology, vol. 143, no. 1, pp. 196–202, 1989.
[65]  W. T. Watford, A. J. Ghio, and J. R. Wright, “Complement-mediated host defense in the lung,” American Journal of Physiology, vol. 279, no. 5, pp. L790–L798, 2000.
[66]  W. T. Watford, J. R. Wright, C. G. Hester, H. Jiang, and M. M. Frank, “Surfactant protein A regulates complement activation,” Journal of Immunology, vol. 167, no. 11, pp. 6593–6600, 2001.
[67]  D. E. Hammerschmidt, L. J. Weaver, and L. D. Hudson, “Association of complement activation and elevated plasma-C5a with adult respiratory distress syndrome. Pathophysiological relevance and possible prognostic value,” The Lancet, vol. 1, no. 8175, pp. 947–949, 1980.
[68]  J. S. Solomkin, L. A. Cotta, P. S. Satoh, J. M. Hurst, and R. D. Nelson, “Complement activation and clearance in acute illness and injury: evidence for C5a as a cell-directed mediator of the adult respiratory distress syndrome in man,” Surgery, vol. 97, no. 6, pp. 668–678, 1985.
[69]  P. F. Langlois and M. S. Gawryl, “Accentuated formation of the terminal C5b-9 complement complex in patient plasma precedes development of the adult respiratory distress syndrome,” American Review of Respiratory Disease, vol. 138, no. 2, pp. 368–375, 1988.
[70]  G. Zilow, J. A. Sturm, U. Rother, and M. Kirschfink, “Complement activation and the prognostic value of C3a in patients at risk of adult respiratory distress syndrome,” Clinical and Experimental Immunology, vol. 79, no. 2, pp. 151–157, 1990.
[71]  P. F. Weinberg, M. A. Matthay, R. O. Webster, K. V. Roskos, I. M. Goldstein, and J. F. Murray, “Biologically active products of complement and acute lung injury in patients with the sepsis syndrome,” American Review of Respiratory Disease, vol. 130, no. 5, pp. 791–796, 1984.
[72]  M. Bosmann and P. A. Ward, “Role of C3, C5 and anaphylatoxin receptors in acute lung injury and in sepsis,” Advances in Experimental Medicine and Biology, vol. 946, pp. 147–159, 2012.
[73]  R. F. Guo and P. A. Ward, “Role of C5a in inflammatory responses,” Annual Review of Immunology, vol. 23, pp. 821–852, 2005.
[74]  W. Seeger, A. Gunther, H. D. Walmrath, F. Grimminger, and H. G. Lasch, “Alveolar surfactant and adult respiratory distress syndrome. Pathogenetic role and therapeutic prospects,” Clinical Investigator, vol. 71, no. 3, pp. 177–190, 1993.
[75]  A. C. Carvalho, S. DeMarinis, C. F. Scott, L. D. Silver, A. H. Schmaier, and R. W. Colman, “Activation of the contact system of plasma proteolysis in the adult respiratory distress syndrome,” Journal of Laboratory and Clinical Medicine, vol. 112, no. 2, pp. 270–277, 1988.
[76]  T. Fuchs-Buder, P. De Moerloose, B. Ricou et al., “Time course of procoagulant activity and D dimer in bronchoalveolar fluid of patients at risk for or with acute respiratory distress syndrome,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 1, pp. 163–167, 1996.
[77]  W. Seeger, J. Hubel, K. Klapettek et al., “Procoagulant activity in bronchoalveolar lavage of severely traumatized patients—relation to the development of acute respiratory distress,” Thrombosis Research, vol. 61, no. 1, pp. 53–64, 1991.
[78]  R. Balk, T. Emerson, F. Fourrier et al., “Therapeutic use of antithrombin concentrate in sepsis,” Seminars in Thrombosis and Hemostasis, vol. 24, no. 2, pp. 183–194, 1998.
[79]  E. Abraham, “Coagulation abnormalities in acute lung injury and sepsis,” American Journal of Respiratory Cell and Molecular Biology, vol. 22, no. 4, pp. 401–404, 2000.
[80]  S. Krishnagopalan, A. Kumar, J. E. Parrillo, and A. Kumar, “Myocardial dysfunction in the patient with sepsis,” Current Opinion in Critical Care, vol. 8, no. 5, pp. 376–388, 2002.
[81]  A. Kumar, R. Brar, P. Wang et al., “Role of nitric oxide and cGMP in human septic serum-induced depression of cardiac myocyte contractility,” American Journal of Physiology, vol. 276, no. 1, pp. R265–R276, 1999.
[82]  J. A. Burke, R. Levi, Z. G. Guo, and E. J. Corey, “Leukotrienes C4, D4 and E4: effects on human and guinea-pig cardiac preparations in vitro,” Journal of Pharmacology and Experimental Therapeutics, vol. 221, no. 1, pp. 235–241, 1982.
[83]  A. Carli, M. C. Auclair, and C. Vernimmen, “Indomethacin suppresses the early cardiodepressant factor released by endotoxin in the rat: possible involvement of a prostacyclin-related material,” Advances in Shock Research, vol. 10, pp. 161–171, 1983.
[84]  R. D. Goldfarb, P. Weber, and J. Eisenman, “Isolation of a shock-induced circulating cardiodepressant substance,” The American Journal of Physiology, vol. 237, no. 2, pp. H168–H177, 1979.
[85]  M. Odeh, “Tumor necrosis factor-α as a myocardial depressant substance,” International Journal of Cardiology, vol. 42, no. 3, pp. 231–238, 1993.
[86]  J. E. Parrillo, C. Burch, J. H. Shelhamer, M. M. Parker, C. Natanson, and W. Schuette, “A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance,” Journal of Clinical Investigation, vol. 76, no. 4, pp. 1539–1553, 1985.
[87]  K. T. Moran, T. J. O'Reilly, M. Allo, and A. M. Munster, “Anaphylotoxin levels following thermal injury,” Burns, vol. 13, no. 4, pp. 266–268, 1987.
[88]  W. J. Schirmer, J. M. Schirmer, G. B. Naff, and D. E. Fry, “Systemic complement activation produces hemodynamic changes characteristic of sepsis,” Archives of Surgery, vol. 123, no. 3, pp. 316–321, 1988.
[89]  W. J. Schirmer, J. M. Schirmer, G. B. Naff, and D. E. Fry, “Complement-mediated hemodynamic depression in the early postburn period,” Journal of Trauma, vol. 29, no. 7, pp. 932–939, 1989.
[90]  A. D. Niederbichler, L. M. Hoesel, M. V. Westfall et al., “An essential role for complement C5a in the pathogenesis of septic cardiac dysfunction,” Journal of Experimental Medicine, vol. 203, no. 1, pp. 53–61, 2006.
[91]  L. M. Hoesel, A. D. Niederbichler, J. Schaefer et al., “C5a-blockade improves burn-induced cardiac dysfunction,” Journal of Immunology, vol. 178, no. 12, pp. 7902–7910, 2007.
[92]  L. L. Wu, Y. Ji, L. W. Dong, and M. S. Liu, “Calcium uptake by sarcoplasmic reticulum is impaired during the hypodynamic phase of sepsis in the rat heart,” Shock, vol. 15, no. 1, pp. 49–55, 2001.
[93]  J. A. Watts, J. A. Kline, L. R. Thornton, R. M. Grattan, and S. S. Brar, “Metabolic dysfunction and depletion of mitochondria in hearts of septic rats,” Journal of Molecular and Cellular Cardiology, vol. 36, no. 1, pp. 141–150, 2004.
[94]  G. Atefi, F. S. Zetoune, T. J. Herron et al., “Complement dependency of cardiomyocyte release of mediators during sepsis,” FASEB Journal, vol. 25, no. 7, pp. 2500–2508, 2011.
[95]  R. J. Levy, D. A. Piel, P. D. Acton et al., “Evidence of myocardial hibernation in the septic heart,” Critical Care Medicine, vol. 33, no. 12, pp. 2752–2756, 2005.
[96]  T. Chakraborti, A. Mandal, M. Mandal, S. Das, and S. Chakraborti, “Complement activation in heart diseases: role of oxidants,” Cellular Signalling, vol. 12, no. 9-10, pp. 607–617, 2000.
[97]  T. Murohara, J. Guo, J. A. Delyani, and A. M. Lefer, “Cardioprotective effects of selective inhibition of the two complement activation pathways in myocardial ischemia and reperfusion injury,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 17, no. 8, pp. 499–507, 1995.
[98]  M. Buerke, D. Prüfer, M. Dahm, H. Oelert, J. Meyer, and H. Darius, “Blocking of classical complement pathway inhibits endothelial adhesion molecule expression and preserves ischemic myocardium from reperfusion injury,” Journal of Pharmacology and Experimental Therapeutics, vol. 286, no. 1, pp. 429–438, 1998.
[99]  J. Fu, G. Lin, B. Zeng et al., “Anti-ischemia/reperfusion of C1 inhibitor in myocardial cell injury via regulation of local myocardial C3 activity,” Biochemical and Biophysical Research Communications, vol. 350, no. 1, pp. 162–168, 2006.
[100]  J. Fu, G. Lin, Z. Wu et al., “Anti-apoptotic role for C1 inhibitor in ischemia/reperfusion-induced myocardial cell injury,” Biochemical and Biophysical Research Communications, vol. 349, no. 2, pp. 504–512, 2006.
[101]  K. Whaley and W. Schwaeble, “Complement and complement deficiencies,” Seminars in Liver Disease, vol. 17, no. 4, pp. 297–310, 1997.
[102]  D. J. Koo, I. H. Chaudry, and P. Wang, “Kupffer cells are responsible for producing inflammatory cytokines and hepatocellular dysfunction during early sepsis,” Journal of Surgical Research, vol. 83, no. 2, pp. 151–157, 1999.
[103]  K. Sheth and P. Bankey, “The liver as an immune organ,” Current Opinion in Critical Care, vol. 7, no. 2, pp. 99–104, 2001.
[104]  R. S. Croner, T. G. Lehmann, C. Fallsehr, C. Herfarth, E. Klar, and M. Kirschfink, “C1-inhibitor reduces hepatic leukocyte-endothelial interaction and the expression of VCAM-1 in LPS-induced sepsis in the rat,” Microvascular Research, vol. 67, no. 2, pp. 182–191, 2004.
[105]  H. Jaeschke, “Cellular adhesion molecules: regulation and functional significance in the pathogenesis of liver diseases,” American Journal of Physiology, vol. 273, no. 3, pp. G602–G611, 1997.
[106]  H. Jaeschke, A. Farhood, M. A. Fisher, and C. W. Smith, “Sequestration of neutrophils in the hepatic vasculature during endotoxemia is independent of β2 integrins and intercellular adhesion molecule-1,” Shock, vol. 6, no. 5, pp. 351–356, 1996.
[107]  C. A. Koch, A. Kanazawa, R. Nishitai et al., “Intrinsic resistance of hepatocytes to complement-mediated injury,” Journal of Immunology, vol. 174, no. 11, pp. 7302–7309, 2005.
[108]  A. I. Jacob, P. K. Goldberg, and N. Bloom, “Endotoxin and bacteria in portal blood,” Gastroenterology, vol. 72, no. 6, pp. 1268–1270, 1977.
[109]  C. D. Wrann, N. A. Tabriz, T. Barkhausen et al., “The phosphatidylinositol 3-kinase signaling pathway exerts protective effects during sepsis by controlling C5a-mediated activation of innate immune functions,” Journal of Immunology, vol. 178, no. 9, pp. 5940–5948, 2007.
[110]  P. N. Cunningham, V. M. Holers, J. J. Alexander, J. M. Guthridge, M. C. Carroll, and R. J. Quigg, “Complement is activated in kidney by endotoxin but does not cause the ensuing acute renal failure,” Kidney International, vol. 58, no. 4, pp. 1580–1587, 2000.
[111]  G. Camussi, C. Ronco, G. Montrucchio, and G. Piccoli, “Role of soluble mediators in sepsis and renal failure,” Kidney International, vol. 53, no. 66, pp. S38–S42, 1998.
[112]  M. Oppermann, M. Haubitz, E. Quentin, and O. Gotze, “Complement activation in patients with renal failure as detected through the quantitation of fragments of the complement proteins C3, C5, and factor B,” Klinische Wochenschrift, vol. 66, no. 18, pp. 857–864, 1988.
[113]  B. H. Ault and H. R. Colten, “Cellular specificity of murine renal C3 expression in two models of inflammation,” Immunology, vol. 81, no. 4, pp. 655–660, 1994.
[114]  R. A. Brooimans, A. P. A. Stegmann, W. T. Van Dorp et al., “Interleukin 2 mediates stimulation of complement C3 biosynthesis in human proximal tubular epithelial cells,” Journal of Clinical Investigation, vol. 88, no. 2, pp. 379–384, 1991.
[115]  S. Tang, W. Zhou, N. S. Sheerin, R. W. Vaughan, and S. H. Sacks, “Contribution of renal secreted complement C3 to the circulating pool in humans,” Journal of Immunology, vol. 162, no. 7, pp. 4336–4341, 1999.
[116]  L. Biancone, S. David, V. D. Pietra, G. Montrucchio, V. Cambi, and G. Camussi, “Alternative pathway activation of complement by cultured human proximal tubular epithelial cells,” Kidney International, vol. 45, no. 2, pp. 451–460, 1994.
[117]  S. Ichida, Y. Yuzawa, H. Okada, K. Yoshioka, and S. Matsuo, “Localization of the complement regulatory proteins in the normal human kidney,” Kidney International, vol. 46, no. 1, pp. 89–96, 1994.
[118]  J. M. Thurman, M. S. Lucia, D. Ljubanovic, and V. M. Holers, “Acute tubular necrosis is characterized by activation of the alternative pathway of complement,” Kidney International, vol. 67, no. 2, pp. 524–530, 2005.
[119]  G. Smedegard, L. Cui, and T. E. Hugli, “Endotoxin-induced shock in the rat. A role for C5a,” American Journal of Pathology, vol. 135, no. 3, pp. 489–497, 1989.
[120]  M. M. Krem and E. D. Cera, “Evolution of enzyme cascades from embryonic development to blood coagulation,” Trends in Biochemical Sciences, vol. 27, no. 2, pp. 67–74, 2002.
[121]  C. T. Esmon, “The impact of the inflammatory response on coagulation,” Thrombosis Research, vol. 114, no. 5-6, pp. 321–327, 2004.
[122]  S. Gando, T. Kameue, N. Matsuda et al., “Combined activation of coagulation and inflammation has an important role in multiple organ dysfunction and poor outcome after severe trauma,” Thrombosis and Haemostasis, vol. 88, no. 6, pp. 943–949, 2002.
[123]  M. Levi, E. De Jonge, and T. Van Der Poll, “New treatment strategies for disseminated intravascular coagulation based on current understanding of the pathophysiology,” Annals of Medicine, vol. 36, no. 1, pp. 41–49, 2004.
[124]  B. Ghebrehiwet, M. Silverberg, and A. P. Kaplan, “Activation of the classical pathway of complement by Hageman factor fragment,” Journal of Experimental Medicine, vol. 153, no. 3, pp. 665–676, 1981.
[125]  G. Goldberger, M. L. Thomas, and B. F. Tack, “NH2-terminal structure and cleavage of guinea pig pro-C3, the precursor of the third complement component,” Journal of Biological Chemistry, vol. 256, no. 24, pp. 12617–12619, 1981.
[126]  M. L. Thoman, J. L. Meuth, and E. L. Morgan, “C3d-K, a kallikrein cleavage fragment of iC3b is a potent inhibitor of cellular proliferation,” Journal of Immunology, vol. 133, no. 5, pp. 2629–2633, 1984.
[127]  T. W. Muhlfelder, J. Niemetz, and D. Kreutzer, “C5 chemotactic fragment induces leukocyte production of tissue factor activity. A link between complement and coagulation,” Journal of Clinical Investigation, vol. 63, no. 1, pp. 147–150, 1979.
[128]  S. M. Rezende, R. E. Simmonds, and D. A. Lane, “Coagulation, inflammation, and apoptosis: different roles for protein S and the protein S-C4b binding protein complex,” Blood, vol. 103, no. 4, pp. 1192–1201, 2004.
[129]  G. R. Bernard, J. L. Vincent, P. F. Laterre et al., “Efficacy and safety of recombinant human activated protein C for severe sepsis,” The New England Journal of Medicine, vol. 344, no. 10, pp. 699–709, 2001.
[130]  C. Caliezi, S. Zeerleder, M. Redondo et al., “C1-inhibitor in patients with severe sepsis and septic shock: beneficial effect on renal dysfunction,” Critical Care Medicine, vol. 30, no. 8, pp. 1722–1728, 2002.
[131]  R. Silasi-Mansat, H. Zhu, N. I. Popescu et al., “Complement inhibition decreases the procoagulant response and confers organ protection in a baboon model of Escherichia coli sepsis,” Blood, vol. 116, no. 6, pp. 1002–1010, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133