全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Histochemical and Immunohistochemical Study of Peripolar Cells in Sheep

DOI: 10.1155/2013/237630

Full-Text   Cite this paper   Add to My Lib

Abstract:

Peripolar cells are granulated cells located in the vascular pole of the renal corpuscle. Even though these cells have already been described, there are still many unknown histological and physiological characteristics. We carried out histochemical and immunohistochemical analyses of peripolar cells in sheep and compared their number in both normal and injured kidneys, discriminating according to the age of the animal. We tested HE, Toluidine Blue, PAS, and Masson's Trichrome stains to select the best stain for identification and quantification. Masson Trichrome yielded the best results and was selected for this purpose. We identified the cells by the presence of cytoplasmatic granules and by their position in the vascular pole. We found no statistically significant association between the number of peripolar cells and the age of the animal or the occurrence of lesions. In the immunohistochemical analysis, we found that the cells were positive to α-smooth muscle actin and less consistently positive to NSE and S100 protein. Chromogranin A, cyclooxygenase-2, AE1/AE3, and Wide Spectrum Cytokeratin and desmin yielded negative results. We conclude that although there was evidence of a contractile function, there was no evidence to support that peripolar cells have either a neuroendocrine or an epithelial nature. 1. Introduction The kidneys are the main urinary system organ, being responsible for maintaining the body hydroelectrolytic balance. Besides these vital homeostatic functions, they are also responsible for the excretion of metabolic degradation by-products, arterial tension regulation, and hormone production (mainly erythropoietin and renin) [1]. In 1979, Ryan et al. described a new kind of cells found in the vascular pole of renal corpuscle in sheep [2]. These were designated by peripolar cells (PPCs) due to their ring-like distribution around the vascular pole [3]. They are located near the inflexion point between the parietal and visceral layers [4]. They were initially classified as epithelial cells due to their location above the basal membrane of Bowman’s corpuscle, and by an abundance of junctions between the basal membrane and the PPCs [2, 5]. PPCs’ main identifying characteristic is the presence of cytoplasmatic granules. These granules have been shown before to be stainable for optical microscopy by PAS, Toluidine Blue, Methylene Blue, and Trichrome methods [2, 5–7]. PPCs are also present in many other animals including humans [4–10]. The percentage of PPCs in an animal varies with species and age: in humans, they were found in 6.5% of the

References

[1]  M. G. Maxie, “The urinary system,” in Pathology of Domestic Animals, K. V. F. Jubb, P. C. Kennedy, and N. Palmer, Eds., vol. 2, pp. 447–522, Academic Press, San Diego, Calif, USA, 4th edition, 1993.
[2]  G. B. Ryan, J. P. Cochlan, and B. A. Scoggins, “The granulated peripolar epithelial cell: a potential secretory component of the renal juxtaglomerular complex,” Nature, vol. 277, no. 5698, pp. 655–656, 1979.
[3]  G. Kelly, I. Downie, D. S. Gardiner, I. A. R. More, and G. B. M. Lindop, “The peripolar cell: a distinctive cell type in the mammalian glomerulus. Morphological evidence from a study of sheep,” Journal of Anatomy, vol. 168, pp. 217–227, 1990.
[4]  D. S. Gardiner, I. A. R. More, and G. B. M. Lindop, “The granular peripolar cell of the human glomerulus: an ultrastructural study,” Journal of Anatomy, vol. 146, pp. 31–43, 1986.
[5]  E. R. Lacy and E. Reale, “Granulated peripolar epithelial cells in the renal corpuscle of marine elasmobranch fish,” Cell and Tissue Research, vol. 257, no. 1, pp. 61–67, 1989.
[6]  D. S. Gardiner and G. B. M. Lindop, “The granular peripolar cell of the human glomerulus: a new component of the juxtaglomerular apparatus?” Histopathology, vol. 9, no. 7, pp. 675–685, 1985.
[7]  J. A. M. Gall, D. Alcorn, and A. Butkus, “Distribution of glomerular peripolar cells in different mammalian species,” Cell and Tissue Research, vol. 244, no. 1, pp. 203–208, 1986.
[8]  I. Morild, J. A. Christensen, E. Mikeler, and A. Bohle, “Peripolar cells in the avian kidney,” Virchows Archiv, vol. 412, no. 5, pp. 471–477, 1988.
[9]  C. M. Thumwood, J. McCausland, D. Alcorn, and G. B. Ryan, “Scanning and transmission electron-microscopic study of peripolar cells in the newborn lamb kidney,” Cell and Tissue Research, vol. 274, no. 3, pp. 597–604, 1993.
[10]  R. H. Hanner and G. B. Ryan, “Ultrastructure of the renal juxtaglomerular complex and peripolar cells in the axolotl (Ambystoma mexicanum) and toad (Bufo marinus),” Journal of Anatomy, vol. 130, no. 3, pp. 445–455, 1980.
[11]  I. W. Gibson, D. S. Gardiner, I. Downie, T. T. Downie, I. A. R. More, and G. B. M. Lindop, “A comparative study of the glomerular peripolar cell and the renin-secreting cell in twelve mammalian species,” Cell and Tissue Research, vol. 277, no. 2, pp. 385–390, 1994.
[12]  D. Alcorn, G. R. Cheshire, J. P. Coghlan, and G. B. Ryan, “Peripolar cell hypertrophy in the renal juxtaglomerular region of newborn sheep,” Cell & Tissue Research, vol. 222, pp. 101–111, 1984.
[13]  P. A. Hill, J. P. Coghlan, B. A. Scoggins, and G. B. Ryan, “Ultrastructural changes in the sheep renal juxtaglomerular apparatus in response to sodium depletion or loading,” Pathology, vol. 15, no. 4, pp. 463–473, 1983.
[14]  D. S. Gardiner and G. B. M. Lindop, “Peripolar cells, granulated glomerular epithelial cells, and their relationship to the juxtaglomerular apparatus in malignant hypertension,” Journal of Pathology, vol. 167, no. 1, pp. 59–64, 1992.
[15]  C. A. Hollywell, A. Jaworowski, C. Thumwood, D. Alcorn, and G. B. Ryan, “Immunohistochemical localization of transthyretin in glomerular peripolar cells of newborn sheep,” Cell and Tissue Research, vol. 267, no. 1, pp. 193–197, 1992.
[16]  L. C. Junqueira and J. Carneiro, Basic Histology, The McGraw-Hill Companies, S?o Paulo, Brazil, 11th edition, 2007.
[17]  I. W. Gibson, I. A. R. More, and G. B. M. Lindop, “A scanning electron-microscopic study of the peripolar cell of the rat renal glomerulus,” Cell and Tissue Research, vol. 257, no. 1, pp. 201–206, 1989.
[18]  J. F. Trahair and G. B. Ryan, “Immunohistochemical identification of plasma proteins in cytoplasmic granules of peripolar cells of the sheep,” Journal of Anatomy, vol. 160, pp. 109–115, 1988.
[19]  J. F. Trahair, J. A. M. Gall, D. Alcorn et al., “Immunohistochemical study of peripolar cells of the sheep,” Journal of Anatomy, vol. 162, pp. 125–132, 1989.
[20]  J. Schaeverbeke and M. Cheignon, “Differentiation of glomerular filter and tubular reabsorption apparatus during fetal development of the rat kidney,” Journal of Embryology and Experimental Morphology, vol. 58, pp. 157–175, 1980.
[21]  P. Bradbury and K. C. Gordon, “Connective tissues and stains,” in Theory and Practice of Histological Techniques, J. D. Bancroft and A. Stevens, Eds., Churchill Livingstone, Edinburgh, UK, 3rd edition.
[22]  A. C. Lendrum, D. S. Fraser, W. Slidders, and R. Henderson, “Studies on the character and staining of fibrin,” Journal of clinical pathology, vol. 15, pp. 401–413, 1962.
[23]  B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, “Internal organization of the cell-transport from the trans golgi network to the cell exterior: exocytosis,” in Molecular Biology of the Cell, B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Eds., Garland Science Taylor & Francis Group, New York, NY, USA, 4th edition, 2004.
[24]  E. I. McDougall, “Proteinuria of suckling ruminants,” The Biochemical Journal, vol. 94, pp. 101–105, 1965.
[25]  National Central of Biotechnology Information, “Entrez Gene: ACTA2 actin, alpha 2, smooth muscle, aorta,” http://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=ShowDetailView&TermToSearch=59.
[26]  S. Kobayashi, S. Okada, T. Hasumi, N. Sato, and S. Fujimura, “The significance of NSE and CEA as a differentiation marker for the cellular heterogeneity of small cell lung cancer,” Tohoku Journal of Experimental Medicine, vol. 189, no. 1, pp. 37–49, 1999.
[27]  A. Kasprzak, M. Zabel, and W. Biczysko, “Selected markers (chromogranin A, neuron-specific enolase, synaptophysin, protein gene product 9.5) in diagnosis and prognosis of neuroendocrine pulmonary tumours,” Polish Journal of Pathology, vol. 58, no. 1, pp. 23–33, 2007.
[28]  D. Schmechel, P. J. Marangos, and M. Brightman, “Neurone-specific enolase is a molecular marker for peripheral and central neuroendocrine cells,” Nature, vol. 276, no. 5690, pp. 834–836, 1978.
[29]  R. L. Eckert, A. M. Broome, M. Ruse, N. Robinson, D. Ryan, and K. Lee, “S100 proteins in the epidermis,” Journal of Investigative Dermatology, vol. 123, no. 1, pp. 23–33, 2004.
[30]  L. J. Van Eldik and D. B. Zimmer, “Approaches to study the role of S100 proteins in calcium-dependent cellular responses,” Journal of dairy science, vol. 71, no. 8, pp. 2028–2034, 1988.
[31]  S. Yui, Y. Nakatani, and M. Mikami, “Calprotectin (S100A8/S100A9), an inflammatory protein complex from neutrophils with a broad apoptosis-inducing activity,” Biological and Pharmaceutical Bulletin, vol. 26, no. 6, pp. 753–760, 2003.
[32]  E. D. Emberley, L. C. Murphy, and P. H. Watson, “S100 proteins and their influence on pro-survival pathways in cancer,” Biochemistry and Cell Biology, vol. 82, no. 4, pp. 508–515, 2004.
[33]  G. N. Hendy, S. Bevan, M. G. Mattei, and A. J. Mouland, “Chromogranin A,” Clinical and Investigative Medicine, vol. 18, no. 1, pp. 47–65, 1995.
[34]  W. D. Travis, A. A. Gal, T. V. Colby, D. S. Klimstra, R. Falk, and M. N. Koss, “Reproducibility of neuroendocrine lung tumor classification,” Human Pathology, vol. 29, no. 3, pp. 272–279, 1998.
[35]  D. S. Gardiner, R. Jackson, and G. B. M. Lindop, “The renin-secreting cell and the glomerular peripolar cell in renal artery stenosis and Addison's disease,” Virchows Archiv A, vol. 420, no. 6, pp. 533–537, 1992.
[36]  R. Eichner, P. Bonitz, and T. T. Sun, “Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression,” Journal of Cell Biology, vol. 98, no. 4, pp. 1388–1396, 1984.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133