全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

More on Superconductors via Gauge/Gravity Duality with Nonlinear Maxwell Field

DOI: 10.1155/2013/782512

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have developed the recent investigations on the second-order phase transition in the holographic superconductor using the probe limit for a nonlinear Maxwell field strength coupled to a massless scalar field. By analytical methods, based on the variational Sturm-Liouville minimization technique, we study the effects of the spacetime dimension and the nonlinearity parameter on the critical temperature and the scalar condensation of the dual operators on the boundary. Further, as a motivated result, we analytically deduce the DC conductivity in the low and zero temperatures regime. Especially in the zero temperature limit and in two dimensional toy model, we thoroughly compute the conductivity analytically. Our work clarifies more features of the holographic superconductors both in different space dimensions and on the effect of the nonlinearity in Maxwell's strength field. 1. Introduction In the recent years, using the holographic picture of the world, the AdS/CFT (anti de Sitter/conformal field theory) correspondence [1–3] has been applied to study some strongly correlated systems in condensed matter physics, especially for strongly coupled systems with the scale-invariance. Particularly, people studied the low temperature, quantum critical systems near critical point (see, e.g., [4, 5] and references therein). The critical phenomena, which happen here, is a second-order phase transition from normal phase to the superconducting phase, in which below a specific temperature , the DC conductivity becomes infinite. Such second-order phase transitions happen in the high-temperature superconductors and can be described very well by the AdS/CFT dictionary [6, 7]. From the classical and phenomenological point of view, superconductivity, in the high-temperature type II superconductors, modeled by a phenomenological Landau-Ginzburg Lagrangian. This Lagrangian contains a general complex value scalar field , plays the role of a condensate in a superconductive phase. Basically, to have a scalar condensation in the boundary quantum field theory using CFT on the boundary of the bulk, Hartnoll et al. [8] introduced a abelian gauge field and a typical conformal coupled charged complex scalar field in the bulk black hole background. The conformal mass is above the Breitenlohner-Freedman (BF) bound [9]. To solve the negative mass problem, finally Gubser [10] showed that the vector potential modifies the mass term of scalar field and we have a possibility to have hairy black holes in some parts of the parameter space. The full description of the superconductivity in the

References

[1]  J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Advances in Theoretical and Mathematical Physics, vol. 2, pp. 231–252, 1998.
[2]  S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Physics Letters, Section B, vol. 428, no. 1-2, pp. 105–114, 1998.
[3]  E. Witten, “Anti-de sitter space and holography,” Advances in Theoretical and Mathematical Physics, vol. 2, pp. 253–291, 1998.
[4]  C. P. Herzog, “Lectures on holographic superfluidity and superconductivity,” Journal of Physics A, vol. 42, no. 34, Article ID 343001, 2009.
[5]  S. A. Hartnoll, “Lectures on holographic methods for condensed matter physics,” Classical and Quantum Gravity, vol. 26, no. 22, Article ID 224002, 2009.
[6]  G. Policastro, D. T. Son, and A. O. Starinets, “Shear viscosity of strongly coupled supersymmetric yang-mills plasma,” Physical Review Letters, vol. 87, no. 8, Article ID 081601, 4 pages, 2001.
[7]  P. Kovtun, D. T. Son, and A. O. Starinets, “Holography and hydrodynamics: diffusion on stretched horizons,” Journal of High Energy Physics, vol. 7, no. 10, pp. 1675–1701, 2003.
[8]  S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, “Building a holographic superconductor,” Physical Review Letters, vol. 101, no. 3, Article ID 031601, 4 pages, 2008.
[9]  P. Breitenlohner and D. Z. Freedman, “Stability in gauged extended supergravity,” Annals of Physics, vol. 144, no. 2, pp. 249–281, 1982.
[10]  S. S. Gubser, “Breaking an abelian gauge symmetry near a black hole horizon,” Physical Review D, vol. 78, Article ID 065034, 15 pages, 2008.
[11]  X. H. Ge, B. Wang, S. F. Wu, and G. H. Yang, “Analytical study on holographic superconductors in external magnetic field,” Journal of High Energy Physics, vol. 1008, p. 108, 2010.
[12]  H. F. Li, R. G. Cai, and H. Q. Zhang, “Analytical studies on holographic superconductors in Gauss-Bonnet gravity,” Journal of High Energy Physics, vol. 1104, p. 028, 2011.
[13]  R. G. Cai, H. F. Li, and H. Q. Zhang, “Analytical studies on holographic insulator/superconductor phase transitions,” Physical Review D, vol. 83, no. 12, Article ID 126007, 7 pages, 2011.
[14]  C. M. Chen and M. F. Wu, “An analytic analysis of phase transitions in holographic superconductors,” Progress of Theoretical Physics, vol. 126, pp. 387–395, 2011.
[15]  X. H. Ge and H. Q. Leng, “Analytical calculation on critical magnetic field in holographic superconductors with backreaction,” Progress of Theoretical Physics, vol. 128, pp. 1211–1228, 2012.
[16]  M. R. Setare, D. Momeni, R. Myrzakulov, and M. Raza, “Holographic superconductors in the AdS black hole with a magnetic charge,” Physica Scripta, vol. 86, Article ID 045005, 2012.
[17]  D. Momeni, M. R. Setare, and N. Majd, “Holographic superconductors in a model of non-relativistic gravity,” Journal of High Energy Physics, vol. 05, p. 118, 2011.
[18]  G. Siopsis, J. Therrien, and S. Musiri, “Holographic superconductors near the Breitenlohner-Freedman bound,” Classical and Quantum Gravity, vol. 29, no. 8, Article ID 085007.
[19]  H. B. Zeng, X. Gao, Y. Jiang, and H. S. Zong, “Analytical computation of critical exponents in several holographic superconductors,” Journal of High Energy Physics, 2011.
[20]  S. Gangopadhyay and D. Roychowdhury, “Analytic study of properties of holographic p-wave superconductors,” Journal of High Energy Physics, vol. 08, p. 104, 2012.
[21]  E. Nakano and W. Y. Wen, “Critical magnetic field in a holographic superconductor,” Physical Review D, vol. 78, no. 4, Article ID 046004, 3 pages, 2008.
[22]  T. Albash and C. V. Johnson, “A holographic superconductor in an external magnetic field,” Journal of High Energy Physics, vol. 2008, p. 121, 2008.
[23]  O. Domenech, M. Montull, A. Pomarol, A. Salvio, and P. J. Silva, “Emergent gauge fields in holographic superconductors,” Journal of High Energy Physics, vol. 2010, p. 033, 2010.
[24]  M. Montull, O. Pujolas, A. Salvio, and P. J. Silva, “Flux periodicities and quantum hair on holographic superconductors,” Physical Review Letters, vol. 107, no. 18, Article ID 181601, 2011.
[25]  M. Montull, O. Pujolas, A. Salvio, and P. J. Silva, “Magnetic response in the holographic insulator/superconductor transition,” Journal of High Energy Physics, vol. 1204, p. 135, 2012.
[26]  Salvio A, “Holographic superfluids and superconductors in dilaton-gravity,” Journal of High Energy Physics, vol. 1209, p. 134, 2012.
[27]  N. Bobev, A. Kundu, K. Pilch, and N. P. Warner, “Minimal holographic superconductors from maximal supergravity,” Journal of High Energy Physics, 25 pages, 2011.
[28]  N. Bobev, N. Halmagyi, K. Pilch, and N. P. Warner, “Supergravity instabilities of non-supersymmetric quantum critical points,” Journal of High Energy Physics, 46 pages, 2010.
[29]  N. Bobev, A. Kundu, K. Pilch, and N. P. Warner, “Minimal holographic superconductors from maximal supergravity,” Journal of High Energy Physics, 25 pages, 2012.
[30]  T. Fischbacher, K. Pilch, and N. P. Warner, “New supersymmetric and stable, non-supersymmetric phases in supergravity and holographic field theory,” http://arxiv.org/abs/1010.4910.
[31]  N. Bobev, A. Kundu, K. Pilch, and N. P. Warner, “Minimal holographic superconductors from maximal supergravity,” Journal of High Energy Physics, 2011.
[32]  D. Roychowdhury, “AdS/CFT superconductors with power maxwell electrodynamics: reminiscent of the meissner effect,” Physics Letters B, vol. 718, no. 3, pp. 1089–1094, 2013.
[33]  D. Roychowdhury, “Effect of external magnetic field on holographic superconductors in presence of nonlinear corrections,” Physical Review D, vol. 86, no. 10, Article ID 106009, 12 pages, 2012.
[34]  R. Banerjee, S. Gangopadhyay, D. Roychowdhury, and A. Lala, “Holographic s-wave condensate with non-linear electrodynamics: a nontrivial boundary value problem,” http://arxiv.org/abs/1208.5902.
[35]  S. Gangopadhyay and D. Roychowdhury, “Analytic study of gauss-bonnet holographic superconductors in born-Infeld electrodynamics,” Journal of High Energy Physics, vol. 05, p. 156, 2012.
[36]  S. Gangopadhyay and D. Roychowdhury, “Analytic study of properties of holographic superconductors in born-infeld electrodynamics,” Journal of High Energy Physics, vol. 05, p. 002, 2012.
[37]  J. P. Wu, Y. Cao, X. M. Kuang, and W. J. Li, “The holographic superconductor with Weyl corrections,” Physics Letters B, vol. 697, no. 2, pp. 153–158, 2011.
[38]  D. Momeni and M. R. Setare, “A note on holographic superconductors with Weyl corrections,” Modern Physics Letters A, vol. 26, no. 38, p. 2889, 2011.
[39]  D. Momeni, M. R. Setare, and R. Myrzakulov, “Condensation of the scalar field with stuckelberg and weyl corrections in the background of a planar AdS-schwarzschild black hole,” International Journal of Modern Physics A, vol. 27, Article ID 1250128, 2012.
[40]  D. Momeni, N. Majd, and R. Myrzakulov, “p-wave holographic superconductors with Weyl corrections,” Europhysics Letters, vol. 97, no. 6, Article ID 61001, 2012.
[41]  S. Nojiri and S. D. Odintsov, “Anomaly-induced effective actions in even dimensions and reliability of s-wave approximation,” Physics Letters B, vol. 463, no. 1, Article ID 990414, pp. 57–62, 1999.
[42]  S. Nojiri and S. D. Odintsov, “Can quantum-corrected btz black hole anti-evaporate?” Modern Physics Letters A, vol. 13, no. 33, Article ID 980603, p. 2695, 1998.
[43]  S. A. Hayward, “Unified first law of black-hole dynamics and relativistic thermodynamics,” Classical and Quantum Gravity, vol. 15, no. 10, p. 3147, 1998.
[44]  S. Nojiri and S. D. Odintsov, “Quantum (in)stability of 2D charged dilaton black holes and 3D rotating black holes,” Physical Review D, vol. 59, no. 4, Article ID 044003, 11 pages, 1999.
[45]  J. Jing, Q. Pan, and S. Chen, “Holographic superconductors with Power-Maxwell field,” Journal of High Energy Physics, vol. 2011, p. 045, 2011.
[46]  S. H. Mazharimousavi and M. Halilsoy, “Black hole solutions in f(R) gravity coupled with non-linear Yang-Mills field,” Physical Review D, vol. 84, Article ID 064032, 2011.
[47]  M. Born and L. Infeld, “Foundations of the new field theory,” Proceedings of the Royal Society A, vol. 144, no. 852, pp. 425–451, 1934.
[48]  Y. N. Obukhov, “Conformal invariance and space-time torsion,” Physics Letters A, vol. 90, no. 1-2, pp. 13–16, 1982.
[49]  Q. Pan, J. Jing, and B. Wang, “Holographic superconductor models with the Maxwell field strength corrections,” Physical Review D, vol. 84, 2011.
[50]  G. T. Horowitz and M. M. Roberts, “Holographic superconductors with various condensates,” Physical Review D, vol. 78, no. 12, Article ID 126008, 8 pages, 2008.
[51]  S. Kanno, “A note on gauss-bonnet holographic superconductors,” Classical and Quantum Gravity, vol. 28, no. 12, Article ID 127001, 2011.
[52]  M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, New York, NY, USA, 1972.
[53]  A. Ronveaux, Heun's Differential Equations, Oxford University Press, 1995.
[54]  J. Ren, “One-dimensional holographic superconductor from AdS3/CFT2 correspondence,” Journal of High Energy Physics, vol. 1011, p. 055, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133