全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On Noncommutative Corrections of Gravitational Energy in Teleparallel Gravity

DOI: 10.1155/2013/217813

Full-Text   Cite this paper   Add to My Lib

Abstract:

We use the theory of teleparallelism equivalent to general relativity based on noncommutative spacetime coordinates. In this context, we write the corrections of the Schwarzschild solution. We propose the existence of a Weitzenb?ck spacetime that matches the corrected metric tensor. As an important result, we find the corrections of the gravitational energy in the realm of teleparallel gravity due to the noncommutativity of spacetime. Then we interpret such corrections as a manifestation of quantum theory in gravitational field. 1. Introduction The notion of noncommutative spatial coordinates arose with Heisenberg, who wrote a letter to Peierls, in 1930, about the existence of an uncertain relation between coordinates in space-time as a possible solution to avoid the singularities in the self-energy terms of pontual particles. Based on such an advice, Peierls applied those ideas on the analysis of the Landau problem which can be described by an electric charge moving into a plane under the influence of a perpendicular magnetic field. Since then, Peierls commented about it with Pauli, who included Oppenheimer in the discussion. Oppenheimer presented the ideas to Hartrand Snyder, his former Ph.D. student [1–3]. Thus Snyder was the first to discuss the idea that spatial coordinates could not commutate to each other at small distances which is a change of perspective of tiny scales [4, 5]. It is worth recalling that the concept of noncommutativity itself is not new in Physics; in fact in Quantum Mechanics the uncertain principle, which is a noncommutative relation between coordinates and momenta, plays a fundamental role. Therefore at the beginning, with the pioneer works of Snyder, the idea was to use the noncommutativity between spacetime coordinates to control the ultraviolet divergences into the realm of quantum electrodynamic. Such an approach, however, got into oblivion due to the success achieved by the so-called renormalization process. More recently the interest of the physical community resurfaced with the application of noncommutative geometry in nonabelian theories [6], in gravitation [7–9], in standard model [10–12], and in the problem of the quantic Hall effect [13]. Certainly the discover that the dynamics of an open string can be explained by noncommutative gauge theories at specific limits [14] has contributed to this renewed interest of the scientific community in the topic. From the mathematical point of view, the simplest algebra of the Hermitian operators , whose mean values correspond to observable coordinates, is given by where is an

References

[1]  W. Pauli, Scientific Correspondence, vol. 2, Spring, Berlin, Germany, 1985, K. von Meyenn, Ed.
[2]  W. Pauli, Scientific Correspondence, vol. 3, Spring, Berlin, Germany, 1993, K. von Meyenn, Ed.
[3]  R. Jackiw, “Physical instances of noncommuting coordinates,” Nuclear Physics B, vol. 108, pp. 30–36, 2002.
[4]  H. S. Snyder, “Quantized space-time,” Physical Review, vol. 71, no. 1, pp. 38–41, 1947.
[5]  H. S. Snyder, “The electromagnetic field in quantized space-time,” Physical Review, vol. 72, no. 1, pp. 68–71, 1947.
[6]  A. H. Chamseddine, G. Felder, and J. Fr?hlich, “Gravity in non-commutative geometry,” Communications in Mathematical Physics, vol. 155, no. 1, pp. 205–217, 1993.
[7]  W. Kalau and M. Walze, “Gravity, non-commutative geometry and the Wodzicki residue,” Journal of Geometry and Physics, vol. 16, no. 4, pp. 327–344, 1995.
[8]  D. Kastler, “The dirac operator and gravitation,” Communications in Mathematical Physics, vol. 166, no. 3, pp. 633–643, 1995.
[9]  A. H. Chamseddine and A. Connes, “The spectral action principle,” Communications in Mathematical Physics, vol. 186, no. 3, pp. 731–750, 1997.
[10]  A. Connes and J. Lott, “Particle models and noncommutative geometry,” Nuclear Physics B, vol. 18, no. 2, pp. 29–47, 1991.
[11]  J. C. Vrilly and J. Gracia-Bonda, “Connes' noncommutative differential geometry and the standard model,” Journal of Geometry and Physics, vol. 12, pp. 223–301, 1993.
[12]  C. Martn, J. Gracia-Bonda, and J. C. Vrilly, “The Standard Model as a noncommutative geometry: the low-energy regime,” Physics Reports, vol. 294, pp. 363–406, 1998.
[13]  J. Bellissard, A. van Elst, and H. Schulz-Baldes, “The noncommutative geometry of the quantum Hall effect,” Journal of Mathematical Physics, vol. 35, no. 10, pp. 5373–5451, 1994.
[14]  N. Seiberg and E. Witten, “String theory and noncommutative geometry,” Journal of High Energy Physics, vol. 1999, no. 9, article 32, 1999.
[15]  E. Akofor, A. P. Balachandran, and A. Joseph, “Quantum fields on the Groenewold-Moyal plane,” International Journal of Modern Physics A, vol. 23, no. 11, pp. 1637–1677, 2008.
[16]  A. Einstein, “Auf die riemann-metrik und den fern-parallelismus gegründete einheitliche feldtheorie,” Annals of Mathematics, vol. 102, pp. 685–697, 1930.
[17]  E. Cartan, “On a generalization of the notion of reimann curvature and spaces with torsion,” in Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity, P. G. Bergmann and V. de Sabbata, Eds., vol. 58 of NATO ASI B Proceedings, pp. 489–491, 1980.
[18]  J. W. Maluf, J. F. da Rocha-Neto, T. M. L. Toribio, and K. H. Castello-Branco, “Energy and angular momentum of the gravitational field in the teleparallel geometry,” Physical Review D, vol. 65, no. 12, Article ID 124001, 2002.
[19]  A. Komar, “Covariant conservation laws in general relativity,” Physical Review, vol. 113, no. 3, pp. 934–936, 1959.
[20]  R. Arnowitt, S. Deser, and C. W. Misner, “The dynamics of general relativity,” in Gravitation: An Introduction to Current Research, pp. 227–265, John Wiley & Sons, New York, NY, USA, 1962.
[21]  J. W. Maluf and J. F. da Rocha-Neto, “Hamiltonian formulation of general relativity in the teleparallel geometry,” Physical Review D, vol. 64, no. 8, Article ID 084014, 2001.
[22]  J. W. Maluf and S. C. Ulhoa, “The energy-momentum of plane-fronted gravitational waves in the teleparallel equivalent of GR,” Physical Review D, vol. 78, Article ID 047502, 2008, Erratum in Physical Review D, vol. 78, Article ID 069901, 2008.
[23]  J. Maluf, M. Veiga, and J. da Rocha-Neto, “Regularized expression for the gravitational energy-momentum in teleparallel gravity and the principle of equivalence,” General Relativity and Gravitation, vol. 39, pp. 227–240, 2007.
[24]  J. F. da Rocha Neto, J. W. Maluf, and S. C. Ulhoa, “Hamiltonian formulation of unimodular gravity in the teleparallel geometry,” Physical Review D, vol. 82, no. 12, Article ID 124035, 2010.
[25]  S. C. Ulhoa, J. F. da Rocha Neto, and J. W. Maluf, “The gravitational energy problem for cosmological models in teleparallel gravity,” International Journal of Modern Physics D, vol. 19, no. 12, pp. 1925–1935, 2010.
[26]  J. W. Maluf, “Hamiltonian formulation of the teleparallel description of general relativity,” Journal of Mathematical Physics, vol. 35, no. 1, pp. 335–343, 1994.
[27]  J. W. Maluf, “The gravitational energy-momentum tensor and the gravitational pressure,” Annalen der Physik, vol. 14, no. 11-12, pp. 723–732, 2005.
[28]  R. d'Inverno, Introducing Einstein's Relativity, Clarendon Press, Oxford, UK, 4th edition, 1996.
[29]  P. Aschieri, C. Blohmann, M. Dimitrijevi?, F. Meyer, P. Schupp, and J. Wess, “A gravity theory on noncommutative spaces,” Classical and Quantum Gravity, vol. 22, no. 17, pp. 3511–3532, 2005.
[30]  P. Mukherjee and A. Saha, “Note on the noncommutative correction to gravity,” Physical Review D, vol. 74, Article ID 027702, 3 pages, 2006.
[31]  M. Chaichian, A. Tureanu, and G. Zet, “Corrections to Schwarzschild solution in noncommutative gauge theory of gravity,” Physics Letters B, vol. 660, no. 5, pp. 573–578, 2008.
[32]  P. Nicolini, “Noncommutative black holes, the final appeal to quantum gravity: a review,” International Journal of Modern Physics A, vol. 24, no. 7, pp. 1229–1308, 2009.
[33]  S. C. Ulhoa, “On special requantization of a black hole,” Brazilian Journal of Physics, vol. 41, no. 4–6, pp. 309–313, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133