全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

First-Order Light Deflection by Einstein-Strauss Vacuole Method

DOI: 10.1155/2013/686950

Full-Text   Cite this paper   Add to My Lib

Abstract:

We resolve here an outstanding problem plaguing conformal gravity in its role in making consistent astrophysical predictions. Though its static spherically symmetric solution incorporates all the successes of Schwarzschild gravity, the fit to observed galactic rotation curves requires , while the observed increase in the Schwarzschild light deflection by galaxies appears to demand . Here we show that, contrary to common knowledge, there is an increase in the Schwarzschild deflection angle in the vicinity of galaxies due purely to the effect of , when the idea of the Einstein-Strauss vacuole model is employed. With the inconsistency now out of the way, conformal gravity should be regarded as a good theory explaining light deflection by galaxies. 1. Introduction The metric exterior to a static spherically symmetric distribution in Weyl conformal gravity has been obtained by Mannheim and Kazanas [1]. Recently, the solution has been used to fit rotation curves of many galaxy samples [2] as well as to predict the maximal size of galaxies [3]. The metric, which we call Mannheim-Kazanas-de Sitter (MKdS) metric, reads ( ) where is the central mass and and are arbitrary constants that could be appropriately fixed by using the fit to rotation curves. For distances neither too small nor too large, the above mentioned metric is a good approximation. Now, there could be three possible ways to calculate light deflection in the above spacetime. First, the conventional calculations for light deflection show that the constant does not appear in the relevant equations, leading finally to the two way deflection as [4] where is the distance of closest approach. The difficulty is that the fit to observed rotation curve requires , and for consistency all other astrophysical observations should respect this sign. Now, the observed light deflection by a galaxy is always more than the Schwarzschild value , and hence to avoid the negative contribution in (3), one must demand [4]. Thus there appears an inconsistency from the usual method. The second option is to use the Rindler-Ishak method [5], which is based on the realization that conventional methods do not apply to asymptotically nonflat spacetimes as the limit makes no sense in it. Their original method of invariant angle is most appropriate in such situations, but it has an as yet unnoticed difficulty on the galactic scales, as explained below. Ishak et al. [6] thereafter improved the calculations using the Einstein-Strauss vacuole model and this provides us with the third and best option in our opinion. The purpose of

References

[1]  P. D. Mannheim and D. Kazanas, “Exact vacuum solution to conformal Weyl gravity and galactic rotation curves,” Astrophysical Journal, vol. 342, p. 635, 1989.
[2]  P. D. Mannheim and J. G. O'Brien, “Impact of a global quadratic potential on galactic rotation curves,” Physical Review Letters, vol. 106, no. 12, Article ID 121101, 2011.
[3]  K. K. Nandi and A. Bhadra, “Comment on ‘Impact of a Global Quadratic Potential on Galactic Rotation Curves’,” Physical Review Letters, vol. 109, no. 7, Article ID 079001, 2012.
[4]  A. Edery and M. B. Paranjape, “Classical tests for Weyl gravity: deflection of light and time delay,” Physical Review D, vol. 58, no. 2, Article ID 024011, 1998.
[5]  W. Rindler and M. Ishak, “Contribution of the cosmological constant to the relativistic bending of light revisited,” Physical Review D, vol. 76, no. 4, Article ID 043006, 2007.
[6]  M. Ishak, W. Rindler, J. Dossett, J. Moldenhauer, and C. Allison, “A new independent limit on the cosmological constant/dark energy from the relativistic bending of light by Galaxies and clusters of Galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 388, no. 3, pp. 1279–1283, 2008.
[7]  A. Einstein and E. Strauss, “The influence of the expansion of space on the gravitation fields surrounding the individual stars,” Reviews of Modern Physics, vol. 17, no. 2-3, pp. 120–124, 1945.
[8]  C. Cattani, C. Cattani, M. Scalia, E. Laserra, I. Bochicchio, and K. K. Nandi, “Correct light deflection in Weyl conformal gravity,” Physical Review D, vol. 87, no. 4, Article ID 047503, 2013.
[9]  J. Sultana and D. Kazanas, “Bending of light in conformal Weyl gravity,” Physical Review D, vol. 81, no. 12, Article ID 127502, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133