全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tectonic and Hydrothermal Activities in Debagh, Guelma Basin (Algeria)

DOI: 10.1155/2013/409475

Full-Text   Cite this paper   Add to My Lib

Abstract:

Quaternary and Pliocene travertines, deposited from hot springs, can reveal much about neotectonic and hydrothermal activity. The aim of this work is the understanding of the actual tectonic activity in the Guelma Basin and in one of its spa structures. Gravity data were collected during a field study in the Hammam Debagh (HD) area and then analyzed to better highlight the architecture of its subsurface underlying structures. This analysis was performed by means of a Bouguer anomaly, upward continuations, and residual and derivative maps. Comparison of gravity maps, field geology, geomorphic observations, and structural maps allowed us to identify the major structural features in the Hammam Debagh. As a result, we confirm the position of the Hammam Debagh active fault which is superimposed to the hydrothermal active source in the NW-SE direction characterized by a negative gravity anomaly. 1. Introduction Plio-Quaternary travertine deposits from hot springs can reveal much about the neotectonic history as demonstrated by many examples worldwide [1]. Several open cracks parallel to active normal faults were identified in deposits at Pamukkale, Turkey [2]. In New Guinea, travertine deposits are controlled by fracturing [3]. Numerous studies show how the deposition of travertine has ceased in relation to tectonic activity (i.e, Hula Valley, Israel [4]). Other examples of??tectonic activity on a normal fault generating hydrothermal systems are known at Mammoth Hot Springs [5] in Slovakia [6]; Aveyron, France [7], and Shelsley, United Kingdom [8]. Tilting, warping, and faulting of the Algerian crust were followed by travertine formation [9]. Several hydrothermal systems and associated travertine deposits are identified in the Tellian Atlas (e.g., Hammam Debagh (HD) in the eastern part and Hammam Boughrara in the western part). Along the Tellian Atlas (Figure 1), most of the hydrothermal sources are located along active faults, activated or reactivated during major seismic events such as Bouchegouf and Hammam N’ba?lis faults [10, 11]. Hammam Debagh (HD) hydrothermal source is located in the western part of the Guelma Basin and is one of the famous spas in northeastern Algeria [10, 12, 13]. The HD area is situated in the western limit of the Guelma Plio-Quaternary pull-apart basin created between two overlapping east-west dextral strike slip faults [10, 14]. This active hydrothermal source is responsible for several meters’ thickness of travertine deposits. The presence of active hydrothermal source indicates the presence of fault not observed so far. This

References

[1]  P. L. Hancock, R. M. L. Chalmers, E. Altunel, and Z. ?akir, “Travitonics: using travertines in active fault studies,” Journal of Structural Geology, vol. 21, no. 8-9, pp. 903–916, 1999.
[2]  E. Altunel and P. L. Hancock, “Morphology and structural setting of Quaternary travertines at Pamukkale, Turkey,” Geological Journal, vol. 28, no. 3-4, pp. 335–346, 1993.
[3]  W. F. Humphreys, S. M. Awramik, and M. H. P. Jebb, “Freshwater biogenic tufa dams in Madang Province, Papua New Guinea,” Journal of the Royal Society of Western Australia, vol. 78, no. 2, pp. 43–54, 1995.
[4]  A. Heimann and E. Sass, “Travertines in the Northern Hula Valley, Israel,” Sedimentology, vol. 36, no. 1, pp. 95–108, 1989.
[5]  K. E. Bargar, “Geology and thermal history of Mammoth Hot Springs, Yellowstone National Park, Wyoming,” United States Geological Survey Bulletin, vol. 1444, pp. 1–55, 1978.
[6]  V. Lozek, “Molluscan characteristics of the Pleistocene warm periods with particular reference to the last interglacial,” Berichte der Deutschen Gesellschaft fur Geologische Wissenschaft Reihe A, vol. 14, pp. 439–469, 1969.
[7]  P. Ambert and A. Tavoso, “Les formations quaternaires de la vallée du Tarn entre Millau et Saint-Rome de Tarn,” Paleobiologie-Continentale, vol. 12, pp. 185–193, 1981.
[8]  A. Pentecost, H. A. Viles, A. S. Goudie, and D. H. Keen, “The travertine deposit at Shelsley Walsh, Hereford & Worcestershire,” Transactions of the Woolhope Naturalists Field Club, vol. 50, pp. 25–36, 2000.
[9]  M. Julian and J. Martin, “Signification géomorphologique des tufs et des travertins,” Bulletin de l'Association Géographique de France, no. 479-480, pp. 219–233, 1981.
[10]  J. M. Vila, La chaine alpine d’Algérie orientale et des confins algéro-tunisiens [Thèse de Doctorat], Université de Pierre et Marie Curie, Paris, France, 1980.
[11]  A. Harbi, S. Maouche, and A. Ayadi, “Neotectonics and associate seismicity in the Eastern Tellian Atlas of Algeria,” Journal of Seismology, vol. 3, no. 1, pp. 95–104, 1999.
[12]  P. Deleau, “Etude géologique des régions de Jemmaps, Hammam Maskoutine et du col des oliviers. Thèse,” Bulletin: Service de la Carte Géologique de l'Algérie, vol. 2, no. 8, p. 583, 1938.
[13]  H. Dib, “Guide pratique des sources thermales de l’Est Algérien,” Mémoires du Service Géologique National, no. 15, p. 106, 2008.
[14]  M. Meghraoui, Géologie des zones sismiques du Nord de l'Algérie. Paléosismologie, Tectonique Active et Synthèse sismotectonique [Thèse de Doctorat d'Etat], Université de Paris-Sud Orsay, 1988.
[15]  D. Benouar, “Materials for the investigation of the seismicity of Algeria and adjacent regions during the twentieth century,” Annali di Geofisica, vol. 37, no. 4, p. 862, 1994.
[16]  A. Harbi, A. Peresan, and G. F. Panza, “Seismicity of Eastern Algeria: a revised and extended earthquake catalogue,” Natural Hazards, vol. 54, no. 3, pp. 725–747, 2010.
[17]  M. Meghraoui, J. L. Morel, J. Andrieux, and M. Dahmani, “Néotectonique de la cha?ne Tello-Rifaine et de la Mer d’Alboran: une zone complexe de convergence continent-continent,” Bulletin de la Société Géologique de France, vol. 167, pp. 143–159, 1996.
[18]  A. Harbi, S. Maouche, and H. Benhallou, “Re-appraisal of seismicity and seismotectonics in the north-eastern Algeria part II: 20th century seismicity and seismotectonics analysis,” Journal of Seismology, vol. 7, no. 2, pp. 221–234, 2003.
[19]  S. Maouche, M. Meghraoui, C. Morhange, S. Belabbes, Y. Bouhadad, and H. Haddoum, “Active coastal thrusting and folding, and uplift rate of the Sahel Anticline and Zemmouri earthquake area (Tell Atlas, Algeria),” Tectonophysics, vol. 509, no. 1-2, pp. 69–80, 2011.
[20]  G. Glacon and H. Rouvier, “L’unité du col d’Adissa (confins Algéro-tunisiens septentrionaux): lithologie et stratigraphie; conséquences structurale et paléogéographique de son individualisation,” Bulletin de la Société Géologique de France, vol. 7–13, pp. 100–110, 1972.
[21]  G. A. Waring, “Thermal springs of the United States and other countries of the world, a summary,” United States Geological Survey, vol. 492, pp. 1–383, 1965.
[22]  A. Deschamps, M. Bezzeghoud, and A. Bounif, “Seismological study of the Constantine (Algeria) earthquake (27 October 1985),” in Seismicity, Seismotectonics and Seismic Risk of the Ibero-Maghrebian Region, J. Mezcua and A. Udias, Eds., vol. 8, pp. 163–173, Instituto Geográfico Nacional, Madrid, Spain, 1991.
[23]  S. Guigue, Les sources thermominérales de l’Algérie. Tome I et II, Serv. Carte Géol. de l’Algérie, 3ème série, 5ème et 9ème fasc, 1940.
[24]  D. McKenzie, “Active tectonics of the Mediterranean region,” Geophysical Journal. Royal Astronomical Society, vol. 30, pp. 109–185, 1972.
[25]  J. M. Nocquet and E. Calais, “Geodetic measurements of crustal deformation in the Western Mediterranean and Europe,” Pure and Applied Geophysics, vol. 161, no. 3, pp. 661–681, 2004.
[26]  E. Serpelloni, G. Vannucci, S. Pondrelli et al., “Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data,” Geophysical Journal International, vol. 169, no. 3, pp. 1180–1200, 2007.
[27]  A. Harbi and S. Maouche, “Les principaux séismes du Nord-Est de l’Algérie,” Mémoires du Service Géologique National, no. 16, p. 106, 2009.
[28]  A. Abtout, L. Hamai, and B. Bouyahiaoui, Etude gravimétrique de la région de Guelat Bousbaa-Nador et du bassin d’Oued Zenati.(Guelma): reconnaissance des aquifères. Rapport ANRH (Agence National des Ressources Hydriques), 2005.
[29]  J. D. A. Zijderveld, “AC demagnetization of rocks: analysis of results,” in Method in Paleomagnetism, D. W. Collinson, K. M. Creer, and S. K. Runcorn, Eds., pp. 254–286, Elsevier, Amsterdam, The Netherlands, 1967.
[30]  C. Pareyn and H. Salimeh, “Dislocation catastrophique d’un tuf lapidifie dans l’arriere-pays d’Honfleur (Calvados, France),” Bulletin Centre de Géomorphologie du Caen, vol. 38, pp. 151–159, 1990.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133