|
A Qualitative Survey of Five Antibiotics in a Water Treatment Plant in Central Plateau of IranDOI: 10.1155/2013/351528 Abstract: Introduction. This study aimed to survey a total of five common human and veterinary antibiotics based on SPE-LC-MS-MS technology in a water treatment plant at central plateau of Iran. Also two sampling techniques, passive and grab samplings, were compared in the detection of selected antibiotics. Materials and Methods. In January to March 2012, grab and passive samples were taken from the influent and effluent of a water treatment plant. The samples were prepared using solid-phase extraction (SPE), and extracts were analyzed by liquid chromatography tandem mass spectrometry (LC-MS-MS). Results. The results showed that enrofloxacin, oxytetracycline, and tylosin were not detected in none of the samples. However, ampicillin was detected in the grab and passive samples taken from the influent (source water) of the plant, and ciprofloxacin was detected in passive samples taken from the influent and effluent (finished water) of the plant. Conclusion. The results imply that passive sampling is a better approach than grab sampling for the investigation of antibiotics in aquatic environments. The presence of ampicillin and ciprofloxacin in source water and finished water of the water treatment plant may lead to potential emergence of resistant bacteria that should be considered in future studies. 1. Introduction Pharmaceuticals are used extensively in human and veterinary medicine [1]. More than 3000 different chemical substances are used as human medicines and in farming and aquaculture applications, in which antibiotic is one of the most important groups of common pharmaceuticals in our daily lives [2]. Besides the critical role of antibiotics in human health, they are potential environmental contaminants, so that there has been increasing concern within the scientific community regarding the presence of different types of drugs in the environment since the second half of the 1990s [3]. There are different pathways for releasing of antibiotics to the aquatic environment. After the administration to humans, their metabolites along with noneliminated parent compounds are excreted into the sewage [4]. Wastewater treatment plants (WWTPs) are not designed to completely remove antibiotics, and consequently they are released into natural waters. Moreover, antibiotics can pass through all natural filtrations and reach ultimately to drinking water due to their high water solubility and often poor degradability [5]. Furthermore, antibiotics are extensively used in fish farms, in which they are used as feed additives or they are directly applied into the water. The
|