|
Cobenefits of Replacing Car Trips with Alternative Transportation: A Review of Evidence and Methodological IssuesDOI: 10.1155/2013/797312 Abstract: It has been reported that motor vehicle emissions contribute nearly a quarter of world energy-related greenhouse gases and cause nonnegligible air pollution primarily in urban areas. Reducing car use and increasing ecofriendly alternative transport, such as public and active transport, are efficient approaches to mitigate harmful environmental impacts caused by a large amount of vehicle use. Besides the environmental benefits of promoting alternative transport, it can also induce other health and economic benefits. At present, a number of studies have been conducted to evaluate cobenefits from greenhouse gas mitigation policies. However, relatively few have focused specifically on the transport sector. A comprehensive understanding of the multiple benefits of alternative transport could assist with policy making in the areas of transport, health, and environment. However, there is no straightforward method which could estimate cobenefits effect at one time. In this paper, the links between vehicle emissions and air quality, as well as the health and economic benefits from alternative transport use, are considered, and methodological issues relating to the modelling of these cobenefits are discussed. 1. Introduction Over the last century, the number of motor vehicles built, purchased, and used on roads globally has dramatically increased to meet people’s travel demands. Although alternative fuels have been developed, more than 95% motor vehicles are still dependent on fossil fuels, a dependency which does not seem to be abating [1, 2]. Because of the large consumption of fossil fuels, transportation is regarded as a major contributor of greenhouse gases (GHGs). According to research conducted by Kahn Ribeiro and colleagues [3], a quarter of world energy-related GHG emissions can be attributed to transportation and nearly 85% of transportation-related GHG is exhausted by land transportation. Furthermore, it is predicted that transport energy usage will continue to increase at a rate of about 2% per year worldwide, whilst total transport energy usage and carbon emissions will be 80% higher than their current levels by 2030 [3]. It is widely acknowledged that exhaust fumes from motor vehicles contain a variety of air pollutants such as nitrogen dioxide (NO2), volatile organic compounds (VOCs), carbon monoxide (CO), and particulate matter (PM). Although the contribution of road transport to local pollution may vary depending on distinct local features, such as geographic and climatic features, the technology distribution of the national fleet, driving
|