全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Determination of Free Fatty Acid by FT-NIR Spectroscopy in Esterification Reaction for Biodiesel Production

DOI: 10.1155/2013/301647

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work reports the use of FT-NIR spectroscopy coupled with multivariate calibration to determine the percentage of free fatty acids (FFA) in samples obtained by the esterification of FFA in vegetable oils. The analytical method used as calibration matrix samples of the reaction medium of esterification of oleic acid in soybean oil in proportions of 0.3 to 40 wt% (by weight) of oleic acid obtained under different experimental conditions and utilized the partial least squares (PLS) regression. The efficiency of the method was tested to predict the content of FFA in reactions of esterification of oleic acid in soybean oil catalysed by KSF clay and Amberlyst 15 commercial resin, both in a batch mode. Good Correlations were observed between the FT-NIR/PLS method and the reference method (AOCS). The results confirm that FT-NIR spectroscopy, in combination with multivariate calibration, is a promising technique for monitoring esterification reaction for biodiesel production. 1. Introduction The merits of biodiesel (fatty acid ethyl or methyl esters) obtained from vegetable oils or animal fats as an alternative to mineral diesel comprise a nontoxic, biodegradable, and a domestically produced and renewable source which is well documented in the literature [1, 2]. Because of the well-known environmental and economical benefits, biodiesel fuel may be expected to be a good alternative to petroleum-based fuel [3]. The biodiesel production is generally accomplished in homogeneous [4–6] and heterogeneous [7–9] reaction systems at low pressures. Recently, the noncatalytic reaction, using alcohol under supercritical conditions at high temperatures and pressures, has also been investigated as an alternative method for fatty acid esters production [10–12]. Fatty acid, methyl or ethyl, esters can be usually obtained from free fatty acid (FFA) esterification reaction, through vegetable oils hydrolysis followed by the fatty acid esterification or from direct vegetable oils transesterification [13]. The importance of examining the esterification reaction in a more detailed manner is justified by the huge amount and variety of vegetable oils worldwide available for biodiesel production [14–16], which may have a high percentage of FFA making the conventional alkali-catalyzed transesterification impracticable, since for this process, the percentage of FFA is to be less than 0.5% [1, 17, 18]. Recent studies propose to obtain esters in two reaction steps of substrates with high acidity, consisting of two approaches: (1) esterification of FFA and subsequent transesterification

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133