|
A Low-Complexity Decision Feedforward Equalizer Architecture for High-Speed Receivers on Highly Dispersive ChannelsDOI: 10.1155/2013/587108 Abstract: This paper presents an improved decision feedforward equalizer (DFFE) for high speed receivers in the presence of highly dispersive channels. This decision-aided equalizer technique has been recently proposed for multigigabit communication receivers, where the use of parallel processing is mandatory. Well-known parallel architectures for the typical decision feedback equalizer (DFE) have a complexity that grows exponentially with the channel memory. Instead, the new DFFE avoids that exponential increase in complexity by using tentative decisions to cancel iteratively the intersymbol interference (ISI). Here, we demostrate that the DFFE not only allows to obtain a similar performance to the typical DFE but it also reduces the compelxity in channels with large memory. Additionally, we propose a theoretical approximation for the error probability in each iteration. In fact, when the number of iteration increases, the error probability in the DFFE tends to approach the DFE. These benefits make the DFFE an excellent choice for the next generation of high-speed receivers. 1. Introduction Future generation of communication systems will operate at multigigabit-per-second data rates on highly dispersive channels [1, 2]. In commercial applications, the digital receiver is often implemented as a monolithic chip in CMOS technology [1]. Maximum clock frequency of state-of-the-art complex digital signal processors in 28?nm CMOS technology is limited to frequencies lower than 1?GHz. Therefore, in order to achieve multigigabit-per-second data rates, parallel processing techniques are required [1]. Maximum likelihood sequence detection (MLSD) and decision feedback equalization (DFE) are two efficient techniques used to compensate the high ISI introduced by such channels as the ones described in [3]. The complexity of the former grows exponentially with the channel memory, regardless of whether parallel processing is used or not. As for the latter, although the complexity of serial implementations grows linearly with channel memory, all presently known parallel processing implementations require that the bottleneck created by the feedback loop be broken using techniques like the ones proposed by [4–6], whose complexity again grows exponentially with the channel memory. Some algorithms to deal with the drawbacks of the DFE in high-speed applications and parallel processing have been proposed by [4–12]. For example, parallel DFE architectures based on look-ahead pipelined multiplexer loops have been introduced in [6, 7]. These architectures can mitigate the speed
|