全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Features Analysis of Lower Extremity Arterial Lesions in 162 Diabetes Patients

DOI: 10.1155/2013/781360

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. This study aimed to investigate the angiographic manifestations of lower extremity atherosclerotic steno-occlusive disease in patients with diabetes. Materials and Methods. A total of 162 patients with diabetes were enrolled in this study. The angiographic findings of lower extremity arterial lesions were evaluated according to location (iliac, femoral, popliteal, and crural artery), type (stenosis or occlusion), and length (<5?cm, 5–10?cm, and >5?cm). Results. A total of 131 of 162 (80.9%) diabetics showed multiple segmental lesions, and 19.1% (31/162) presented single segmental lesions in the lower extremity artery. Crural artery was the mainly involved location (39/162, 85.8%). Among the recorded 660 lesions of 162 cases, 437 (66.2%) were occlusion lesions, while 223 (33.8%) were stenosis lesions. Of 437 occlusion lesions, 308 lesions (70.5%) were in crural artery. More than 10?cm occlusion lesion (242/392, 61.7%) was the main manifestation in crural artery, especially in anterior (92/127, 67.2%) and posterior tibial arteries (91/124, 73.4%), which was higher than that in iliac artery (8/33, 24.2%), popliteal artery (53/157, 33.8%), and femoral artery (11/78, 14.1%). Conclusion. In diabetic subjects with lower limb artery ischemia, the vascular involvement is extremely diffuse and particularly severe in crural arteries, with high prevalence of more than 10 cm occlusion lesions. 1. Introduction The complications of diabetic vasculopathy commonly include two categories: microvascular and macrovascular complications. Macrovascular disease is the most common reason of mortality and morbidity in diabetes and is responsible for high incidence of vascular diseases such as stroke, myocardial infarction, and peripheral vascular diseases (PAD) [1]. Epidemiological evidence has confirmed an association between diabetes and increased prevalence of PAD. The duration and severity of diabetes correlate with incidence and extent of PAD [2, 3]. Diabetes changes the nature of PAD. Traditionally, macrovascular diseases are thought as underlying obstructive atherosclerotic diseases of major arteries. Diabetic patients more commonly have infrapopliteal arterial occlusive disease and vascular calcification than nondiabetic cohorts [4]. Pathological changes of major blood vessels lead to functional and structural abnormalities in diabetic vessels including endothelial dysfunction, reduced vascular compliance, and atherosclerosis [5]. Diabetic lower extremity arterial disease is the main cause of nontraumatic amputation. Diabetic patients with lower extremity

References

[1]  S. Rahman, T. Rahman, A. A. S. Ismail, and A. R. A. Rashid, “Diabetes-associated macrovasculopathy: pathophysiology and pathogenesis,” Diabetes, Obesity and Metabolism, vol. 9, no. 6, pp. 767–780, 2007.
[2]  American Diabetes Association, “Peripheral arterial disease in people with diabetes,” Diabetes Care, vol. 26, no. 12, pp. 3333–3341, 2003.
[3]  M. Bosevski, “Peripheral arterial disease and diabetes,” Prilozi, vol. 33, no. 1, pp. 65–78, 2012.
[4]  S. D. Funk, A. Yurdagul Jr., and A. W. Orr, “Hyperglycemia and endothelial dysfunction in atherosclerosis: lessons from type 1 diabetes,” International Journal of Vascular Medicine, vol. 2012, Article ID 569654, 19 pages, 2012.
[5]  H. Zhang, K. C. Dellsperger, and C. Zhang, “The link between metabolic abnormalities and endothelial dysfunction in type 2 diabetes: an update,” Basic Research in Cardiology, vol. 107, no. 1, pp. 1–11, 2012.
[6]  L. Graziani, A. Silvestro, V. Bertone et al., “Vascular involvement in diabetic subjects with ischemic foot ulcer: a new morphologic categorization of disease severity,” European Journal of Vascular & Endovascular Surgery, vol. 33, no. 4, pp. 453–460, 2007.
[7]  L. Allard, G. Cloutier, Z. Guo, and L. G. Durand, “Review of the assessment of single level and multilevel arterial occlusive disease in lower limbs by duplex ultrasound,” Ultrasound in Medicine and Biology, vol. 25, no. 4, pp. 495–502, 1999.
[8]  C. J. Lyon, R. E. Law, and W. A. Hsueh, “Minireview: adiposity, inflammation, and atherogenesis,” Endocrinology, vol. 144, no. 6, pp. 2195–2200, 2003.
[9]  I. Tabas, A. Tall, and D. Accili, “The impact of macrophage insulin resistance on advanced atherosclerotic plaque progression,” Circulation Research, vol. 106, no. 1, pp. 58–67, 2010.
[10]  S. Lehto, L. Niskanen, M. Suhonen, T. R?nnemaa, and M. Laakso, “Medial artery calcification: a neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 16, no. 8, pp. 978–983, 1996.
[11]  R. Brown, T. D. Nguyen, P. Spincemaille, M. R. Prince, and Y. Wang, “In vivo quantification of femoral—popliteal compression during isometric thigh contraction: assessment using MR angiography,” Journal of Magnetic Resonance Imaging, vol. 29, no. 5, pp. 1116–1124, 2009.
[12]  H. H. Dosluoglu, G. S. Cherr, P. Lall, L. M. Harris, and M. L. Dryjski, “Peroneal artery-only runoff following endovascular revascularizations is effective for limb salvage in patients with tissue loss,” Journal of Vascular Surgery, vol. 48, no. 1, pp. 137–143, 2008.
[13]  N. Westerhof, N. Stergiopulos, and M. I. Noble, “Law of poiseuille,” in Snapshots of Hemodynamics, pp. 9–14, Springer, New York, NY, USA, 2010.
[14]  E. Faglia, F. Favales, A. Quarantiello et al., “Angiographic evaluation of peripheral arterial occlusive disease and its role as a prognostic determinant for major amputation in diabetic subjects with foot ulcers,” Diabetes Care, vol. 21, no. 4, pp. 625–630, 1998.
[15]  C. van der Feen, F. S. Neijens, S. D. J. M. Kanters, W. P. T. M. Mali, R. P. Stolk, and J. D. Banga, “Angiographic distribution of lower extremity atherosclerosis in patients with and without diabetes,” Diabetic Medicine, vol. 19, no. 5, pp. 366–370, 2002.
[16]  E. B. Jude, S. O. Oyibo, N. Chalmers, and A. J. M. Boulton, “Peripheral arterial disease in diabetic and nondiabetic patients: a comparison of severity and outcome,” Diabetes Care, vol. 24, no. 8, pp. 1433–1437, 2001.
[17]  L. Drouet, C. Bal Dit Sollier, and P. Henry, “The basis of platelets: platelets and atherothrombosis: an understanding of the lack of efficacy of aspirin in peripheral arterial disease (PAD) and diabetic patients,” Drugs, vol. 70, no. 1, pp. 9–14, 2010.
[18]  F. G. Scholten, G. A. O. Warnars, W. P. T. Mali, and M. S. van Leeuwen, “Femoropopliteal occlusions and the adductor canal hiatus, duplex study,” European Journal of Vascular Surgery, vol. 7, no. 6, pp. 680–683, 1993.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133