The involvement of the Notch signaling pathway in the cellular differentiation of the mammalian kidney is established. Recently, the dysregulation of Notch signaling molecules has been identified in acute and chronic renal injuries, fibrosis models, and diabetic kidney biopsies. The canonical Notch ligand , Jagged1, is upregulated in a transforming growth factor-beta- (TGF-β-) dependent manner during chronic kidney disease. TGF-β, a central mediator of renal fibrosis, also is a major contributor to the development of diabetic nephropathy. To explore the roles and possible mechanisms of Notch signaling molecules in the pathogenesis of diabetic nephropathy, we exposed cultured rat mesangial cells to a γ-secretase inhibitor (DAPT) or high glucose and measured the expression of Notch signaling molecules and the fibrosis index. Notch pathway-related molecules, TGF-β, and fibronectin increased with exposure to high glucose and decreased with DAPT treatment. Our results suggest that the Notch signaling pathway may precipitate diabetic nephropathy via TGF-β activation. 1. Introduction Diabetic nephropathy is a common microvascular complication of diabetes with a poorly understood pathogenesis. Hemodynamic changes and disorders of glucose metabolism resulting from genetic factors, hyperglycemia, and/or the actions of angiotensin II and other cytokines can precipitate in the development of diabetic nephropathy. Notably, activation of the Notch signaling pathway can induce the formation of glomerular and tubular lesions that are characteristic of this disease [1, 2]. The Notch ligand, Jagged1, and its target gene product, Hes1, are elevated in renal biopsies from diabetic nephropathy patients, further implicating Notch activation in this disease [3–5]. Despite evidence that Notch activation is present in diabetic nephropathy specimens in vivo, no reports have investigated Notch signaling during the development of diabetic nephropathy. The early stages of diabetic nephropathy are associated with changes in certain cytokines, growth factors, and adhesion molecules, including TGF- , a central mediator of the fibrotic response. Enhanced fibronectin (FN) deposition ultimately leads to glomerulosclerosis and tubulointerstitial fibrosis, which are characteristics of end-stage diabetic nephropathy [6]. The levels of Jagged1, Jagged2, and Notch1, 4 were upregulated significantly in a human kidney epithelial cell line (CC-2554) with TGF- treatment in a dose-dependent manner [7]. Whether the Notch signaling pathway is involved directly in the pathogenesis of diabetic
References
[1]
T. Niranjan, B. Bielesz, A. Gruenwald et al., “The Notch pathway in podocytes plays a role in the development of glomerular disease,” Nature Medicine, vol. 14, no. 3, pp. 290–298, 2008.
[2]
L. Barisoni, H. W. Schnaper, and J. B. Kopp, “A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases,” Clinical Journal of the American Society of Nephrology, vol. 2, no. 3, pp. 529–542, 2007.
[3]
D. T. Teachey, A. E. Seif, V. I. Brown, et al., “Targeting Notch signaling in autoimmune and lymphoproliferative disease,” Blood, vol. 111, no. 2, pp. 705–714, 2008.
[4]
J. H. Li, X. L. Qu, and J. F. Bertram, “Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice,” The American Journal of Pathology, vol. 175, no. 4, pp. 1380–1388, 2009.
[5]
D. W. Walsh, S. A. Roxburgh, P. McGettigan, et al., “Co-regulation of Gremlin and Notch signalling in diabetic nephropathy,” Biochim Biophys Acta, vol. 1782, no. 1, pp. 10–21, 2008.
[6]
F. P. Schena and L. Gesualdo, “Pathogenetic mechanisms of diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 16, supplement 1, pp. S30–S33, 2005.
[7]
J. Morrissey, G. Guo, K. Moridaira, et al., “Transforming growth factor-β beta induces renal epithelial Jagged-l expression in fibrotic disease,” Journal of the American Society of Nephrology, vol. 13, no. 6, pp. 1499–1508, 2002.
[8]
R. Kopan and M. X. G. Ilagan, “The canonical Notch signaling pathway: unfolding the activation mechanism,” Cell, vol. 137, no. 2, pp. 216–233, 2009.
[9]
M. X. Ilagan and R. Kopan, “SnapShot: Notch signaling pathway,” Cell, vol. 128, no. 6, article 1246, 2007.
[10]
M. Baron, “An overview of the Notch signall-ing pathway,” Seminars in Cell & Developmental Biology, vol. 14, no. 2, pp. 113–119, 2003.
[11]
M. Murea, J. K. Park, S. Sharma, et al., “Expression of Notch pathway proteins correlates with albuminuria, glomerulosclerosis, and renal function,” Kidney International, vol. 78, no. 5, pp. 514–522, 2010.
[12]
A. L. Penton, L. Leonard, and N. Spinner, “Notch signaling in human development and disease,” Seminars in Cell & Developmental Biology, vol. 23, no. 4, pp. 450–457, 2012.
[13]
M. Baron, H. Aslam, M. Flasza, et al., “Multiple levels of Notch signal regulation,” Molecular Membrane Biology, vol. 19, no. 1, pp. 27–38, 2002.
[14]
Y. Sirin and K. Susztak, “Notch in the kidney: development and disease,” The Journal of Pathology, vol. 226, no. 2, pp. 394–403, 2012.
[15]
E. C. Lai, “Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins,” EMBO Reports, vol. 3, no. 9, pp. 840–845, 2002.
[16]
L. Wu, T. Sun, K. Kobayashi, et al., “Identifi- cation of a family of mastermind-like transcriptional coactivators for mammalian notch receptors,” Molecular and Cellular Biology, vol. 22, no. 21, pp. 7688–7700, 2002.
[17]
S. Sumual, S. Saad, O. Tang et al., “Differential regulation of Snail by hypoxia and hyperglycemia in human proximal tubule cells,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 10, pp. 1689–1697, 2010.
[18]
C. L. Lin, F. S. Wang, Y. C. Hsu, et al., “Modulation of notch-1 signaling alleviates vascular endothelial growth factor-mediated diabetic nephropathy,” Diabetes, vol. 59, no. 8, pp. 1915–1925, 2010.
[19]
T. Niranjan, M. Murea, and K. Susztak, “The pathogenic role of notch activation in podocytes,” Nephron, vol. 111, no. 4, pp. e73–e79, 2009.
[20]
B. Bielesz, Y. Sirin, H. Si, et al., “Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans,” Journal of Clinical Investigation, vol. 120, no. 11, pp. 4040–4054, 2010.
[21]
D. JaVelaud and A. Mauviel, “Transforming growth factor-betas:smad signaling and roles in physiopathology,” Pathologie Biologie, vol. 52, no. 1, pp. 50–54, 2004.
[22]
B. Pasche, “Role of transforming growth factor beta in cancer,” Journal of Cellular Physiology, vol. l86, no. 2, pp. 53–168, 200l.
[23]
K. C. Nyhan, N. Faherty, G. Murray, et al., “Jagged/Notch signalling is required for a subset of TGFβ1 responses in human kidney epithelial cells,” Biochimica et Biophysica Acta, vol. 1803, no. 12, pp. 1386–1395, 2010.
[24]
W. Wang, V. Koka, and H. Y. lan, “Transforming growth factor-beta and smad signalling in kidney diseases,” Nephrology, vol. 10, no. 1, pp. 48–56, 2005.
[25]
M. Fujimoto, Y. Maezawa, K. Yokote, et al., “Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy,” Biochemical and Biophysical Research Communications, vol. 305, no. 4, pp. 1002–1007, 2003.
[26]
Y. Li, J. Yang, C. Dai, et al., “Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis,” The Journal of Clinical Investigation, vol. 112, no. 4, pp. 503–516, 2003.
[27]
P. R. Mertens, U. Raffetseder, and T. Rauen, “Notch receptors: a new target in glomerular diseases,” Nephrology Dialysis Transplantation, vol. 23, no. 9, pp. 2743–2745, 2008.
[28]
J. Zavadil, L. Cermak, N. Soto-Nieves, et al., “Integration of TGF-beta/Smad and Jaggedl/Notch signalling in epithelial-to-mesenchymal transition,” EMBO Journal, vol. 23, no. 5, pp. 1155–1165, 2004.