Objective. To review the current literature investigating the effects of dipeptidyl peptidase-4 (DPP-4) inhibitors on the risk factors of cardiovascular disease (CVD). Methods. We conducted a search of PubMed and MEDLINE database, using the term DPP-4 inhibitor in combination with the following terms: metabolic syndrome, hypertension, dyslipidemia, insulin resistance, obesity, and CVD. We reviewed 100 relevant studies out of 227 articles, excluding single case reports, studies using animal models, and reports not written in English. We included 38 references in this review article. Results. The majority of the recent clinical studies have demonstrated that DPP-4 inhibitors have beneficial effects on cardiovascular (CV) system. These agents may have the potential to lower blood pressure, improve lipid profile and endothelial dysfunction, decrease the macrophage-mediated inflammatory response, and prevent myocardial injury. Conclusion. DPP-4 inhibitors have some CV protective effects in type 2 diabetes mellitus (T2DM) in addition to their antidiabetic actions. Long-term outcome clinical trials are under way to investigate the effects of the DPP-4 inhibitors on the elevated CV risks in patients with T2DM. Further investigation in a large cohort is warranted to assess the exact mechanisms of CV protective effects of DPP-4 inhibitors. 1. Introduction T2DM is a well-studied chronic metabolic disease that when left untreated or insufficiently managed can cause serious microvascular and macrovascular complications. The blood glucose-lowering agents such as metformin, sulfonylurea derivatives, and insulin all can improve glycemic control in patients with T2DM, but these agents have limited or no effect on the associated CV risk factors accompanying T2DM including dyslipidemia, hypertension, and obesity. Treatment with both sulfonylurea derivatives and insulin has been associated with weight gain, which may diminish any positive effects on vascular endpoints, and thiazolidinediones have even been associated with an increased risk of CVD [1, 2]. Thus, there is a need to ensure that any new medication for T2DM is not associated with a deleterious effect on CV outcomes. Glucose homeostasis is achieved by a complex interaction of hormones, principally insulin, glucagon, amylin, and incretins. Incretins are secreted from gastrointestinal tract in response to food intake and have several systemic effects, including glucose-dependent stimulation of insulin secretion by pancreatic beta-cells [3]. Two incretins have been identified: glucagon-like peptide-1 (GLP-1),
References
[1]
S. Simseka and B. E. de Galan, “Cardiovascular protective properties of incretin-based therapies in type 2 diabetes,” Current Opinion in Lipidology, vol. 23, no. 6, pp. 540–547, 2012.
[2]
S. E. Nissen and K. Wolski, “Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes,” The New England Journal of Medicine, vol. 356, no. 24, pp. 2457–2471, 2007.
[3]
D. J. Drucker, “Dipeptidyl peptidase-4 inhibitors and the treatment of type 2 diabetes,” Diabetes Care, vol. 30, no. 6, pp. 1335–1343, 2007.
[4]
E. Mannucci and C. M. Rotella, “Future perspectives on glucagon-like peptide-1, diabetes and cardiovascular risk,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 18, no. 9, pp. 639–645, 2008.
[5]
M. Rizzo, A. A. Rizvi, G. A. Spinas, G. B. Rini, and K. Berneis, “Glucose lowering and anti-atherogenic effects of incretin-based therapies: GLP-1 analogues and DPP-4-inhibitors,” Expert Opinion on Investigational Drugs, vol. 18, no. 10, pp. 1495–1503, 2009.
[6]
F. Cavalot, A. Petrelli, M. Traversa et al., “Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: lessons from the San Luigi Gonzaga diabetes study,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 3, pp. 813–819, 2006.
[7]
T. Jose and S. E. Inzucchi, “Cardiovascular effects of the DPP-4 inhibitors,” Diabetes & Vascular Disease Research, vol. 9, no. 2, pp. 109–116, 2012.
[8]
D. Dicker, “DPP-4 inhibitors: impact on glycemic control and cardiovascular risk factors,” Diabetes care, vol. 34, pp. S276–S278, 2011.
[9]
R. E. Amori, J. Lau, and A. G. Pittas, “Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis,” Journal of the American Medical Association, vol. 298, no. 2, pp. 194–206, 2007.
[10]
Z. Shah, C. Pineda, T. Kampfrath, et al., “Acute DPP-4 inhibition modulates vascular tone through GLP-1 independent pathways,” Vascular Pharmacology, vol. 55, no. 1–3, pp. 2–9, 2011.
[11]
S. Ogawa, M. Ishiki, K. Nako et al., “Sitagliptin, a dipeptidyl peptidase-4 inhibitor, decreases systolic blood pressure in Japanese hypertensive patients with type 2 diabetes,” The Tohoku Journal of Experimental Medicine, vol. 223, no. 2, pp. 133–135, 2011.
[12]
P. Anagnostis, V. G. Athyros, F. Adamidou et al., “Glucagon-like peptide-1-based therapies and cardiovascular disease: looking beyond glycaemic control,” Diabetes, Obesity and Metabolism, vol. 13, no. 4, pp. 302–312, 2011.
[13]
G. C. Mistry, A. L. Maes, K. C. Lasseter et al., “Effect of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on blood pressure in nondiabetic patients with mild to moderate hypertension,” Journal of Clinical Pharmacology, vol. 48, no. 5, pp. 592–598, 2008.
[14]
A. Marney, S. Kunchakarra, L. Byrne, and N. J. Brown, “Interactive hemodynamic effects of dipeptidyl peptidase-IV inhibition and angiotensin-converting enzyme inhibition in humans,” Hypertension, vol. 56, no. 4, pp. 728–733, 2010.
[15]
E. Bosi, R. P. Camisasca, C. Collober, E. Rochotte, and A. J. Garber, “Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin,” Diabetes Care, vol. 30, no. 4, pp. 890–895, 2007.
[16]
B. G. Nordestgaard, M. Benn, P. Schnohr, and A. Tybj?rg-Hansen, “Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women,” Journal of the American Medical Association, vol. 298, no. 3, pp. 299–308, 2007.
[17]
E. S. Horton, C. Silberman, K. L. Davis, and R. Berria, “Weight loss, glycemic control, and changes in cardiovascular biomarkers in patients with type 2 diabetes receiving incretin therapies or insulin in a large cohort database,” Diabetes Care, vol. 33, no. 8, pp. 1759–1765, 2010.
[18]
M. Monami, C. Lamanna, C. M. Desideri, and E. Mannucci, “DPP-4 inhibitors and lipids: systematic review and meta-analysis,” Advances in Therapy, vol. 29, no. 1, pp. 14–25, 2012.
[19]
M. Boschmann, S. Engeli, K. Dobberstein et al., “Dipeptidyl-peptidase-IV inhibition augments postprandial lipid mobilization and oxidation in type 2 diabetic patients,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 3, pp. 846–852, 2009.
[20]
N. Matikainen, S. M?ntt?ri, A. Schweizer et al., “Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes,” Diabetologia, vol. 49, no. 9, pp. 2049–2057, 2006.
[21]
S. G. Chrysant and G. S. Chrysant, “Clinical implications of cardiovascular preventing pleiotropic effects of dipeptidyl peptidase-4 inhibitors,” American Journal of Cardiology, vol. 109, no. 11, pp. 1681–1685, 2012.
[22]
K. A. B. Davey, P. B. Garlick, A. Warley, and R. Southworth, “Immunogold labeling study of the distribution of GLUT-1 and GLUT-4 in cardiac tissue following stimulation by insulin or ischemia,” American Journal of Physiology, vol. 292, no. 4, pp. H2009–H2019, 2007.
[23]
S. S. Engel, G. T. Golm, D. Shapiro, M. J. Davies, K. D. Kaufman, and B. J. Goldstein, “Cardiovascular safety of sitagliptin in patients with type 2 diabetes mellitus: a pooled analysis,” Cardiovascular Diabetology, vol. 12, no. 1, 2013.
[24]
H. R. Patil, F. J. Al Badarin, H. A. Al Shami et al., “Meta-analysis of effect of dipeptidyl peptidase-4 inhibitors on cardiovascular risk in type 2 diabetes mellitus,” American Journal of Cardiology, vol. 110, no. 6, pp. 826–833, 2012.
[25]
P. A. Read, F. Z. Khan, P. M. Heck, S. P. Hoole, and D. P. Dutka, “DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease,” Circulation, vol. 3, no. 2, pp. 195–201, 2010.
[26]
A. Schweizer, S. Dejager, J. E. Foley, A. Couturier, M. Ligueros-Saylan, and W. Kothny, “Assessing the cardio-cerebrovascular safety of vildagliptin: meta-analysis of adjudicated events from a large Phase III type 2 diabetes population,” Diabetes, Obesity and Metabolism, vol. 12, no. 6, pp. 485–494, 2010.
[27]
Monami, I. Dicembrini, D. Martelli, and E. Mannucci, “Safety of dipeptidyl peptidase-4 inhibitors: a meta-analysis of randomized clinical trials,” Current Medical Research and Opinion, vol. 27, supplement 3, pp. 57–64, 2011.
[28]
R. Frederich, J. H. Alexander, F. T. Fiedorek, et al., “A systematic assessment of cardiovascular outcomes in the saxagliptin drug development program for type 2 diabetes,” Postgraduate Medicine, vol. 122, no. 3, pp. 16–27, 2010.
[29]
A. Arakelyan, J. Petrkova, Z. Hermanova, A. Boyajyan, J. Lukl, and M. Petrek, “Serum levels of the MCP-1 chemokine in patients with ischemic stroke and myocardial infarction,” Mediators of Inflammation, vol. 2005, no. 3, pp. 175–179, 2005.
[30]
G. P. Fadini, E. Boscaro, M. Albiero, et al., “The oral dipeptidyl peptidase-4 inhibitor sitagliptin increases circulating endothelial progenitor cells in patients with type 2 diabetes: possible role of stromal-derived factor-1alpha,” Diabetes Care, vol. 33, no. 7, pp. 1607–1609, 2010.
[31]
G. P. Fadini, C. Agostini, S. Sartore, and A. Avogaro, “Endothelial progenitor cells in the natural history of atherosclerosis,” Atherosclerosis, vol. 194, no. 1, pp. 46–54, 2007.
[32]
J. H. O'Keefe, N. M. Gheewala, and J. O. O'Keefe, “Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health,” Journal of the American College of Cardiology, vol. 51, no. 3, pp. 249–255, 2008.
[33]
J. Matsubara, S. Sugiyama, E. Akiyama, et al., “Dipeptidyl peptidase-4 inhibitor, sitagliptin, improves endothelial dysfunction in association with its anti-inflammatory effects in patients with coronary artery disease and uncontrolled diabetes,” Circulation Journal, Article ID 12-1168, 2013.
[34]
“EXAMINE: Cardiovascular Outcomes Study of Alogliptin in Subjects with Type 2 Diabetes and Acute Coronary Syndrome,” ClinicalTrials.gov identifier: NCT00968708.
[35]
“CAROLINA: Cardiovascular Outcome Study of Linagliptin Versus Glimepiride in Patients with Type 2 Diabetes,” ClinicalTrials.gov identifier: NCT01243424.
[36]
“SAVOR-TIMI 53: Does Saxagliptin Reduce the Risk of Cardiovascular Events when Used Alone or Added to Other Diabetes Medications?” ClinicalTrials.gov identifier: NCT01107886.
H. D. Theiss, C. Brenner, M. G. Engelmann et al., “Safety and efficacy of SITAgliptin plus GRanulocyte-colony-stimulating factor in patients suffering from Acute Myocardial Infarction (SITAGRAMI-Trial)—Rationale, design and first interim analysis,” International Journal of Cardiology, vol. 145, no. 2, pp. 282–284, 2010.