全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Glomerulopathy in the KK.Cg-Ay/J Mouse Reflects the Pathology of Diabetic Nephropathy

DOI: 10.1155/2013/498925

Full-Text   Cite this paper   Add to My Lib

Abstract:

The KK.Cg- /J (KK- ) mouse strain is a previously described model of type 2 diabetes with renal impairment. In the present study, female KK- mice received an elevated fat content diet (24% of calories), and a cohort was uninephrectomized (Unx) to drive renal disease severity. Compared to KK- controls, 26-week-old KK- mice had elevated HbA1c, insulin, leptin, triglycerides, and cholesterol, and Unx further elevated these markers of metabolic dysregulation. Unx KK- mice also exhibited elevated serum BUN and reduced glomerular filtration, indicating that reduction in renal mass leads to more severe impairment in renal function. Glomerular hypertrophy and hypercellularity, mesangial matrix expansion, podocyte effacement, and basement membrane thickening were present in both binephric and uninephrectomized cohorts. Glomerular size was increased in both groups, but podocyte density was reduced only in the Unx animals. Consistent with functional and histological evidence of increased injury, fibrotic (fibronectin 1, MMP9, and TGFβ1) and inflammatory (IL-6, CD68) genes were markedly upregulated in Unx KK- mice, while podocyte markers (nephrin and podocin) were significantly decreased. These data suggest podocyte injury developing into glomerulopathy in KK- mice. The addition of uninephrectomy enhances renal injury in this model, resulting in a disease which more closely resembles human diabetic nephropathy. 1. Introduction Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD) and is associated with high cardiovascular risk and significant morbidity and mortality [1, 2]. Disease progression is difficult to predict, as rates of decline in glomerular filtration rate (GFR) are variable in this patient population and only one-third of diabetic patients, the majority of whom have type 2 diabetes (T2D), develop progressive renal failure. The pathogenesis of DN is mediated by a complex interplay of genetic and environmental modifiers resulting in hemodynamic and structural changes in the kidney that contribute to progressive functional loss in both the glomerulus and tubular-interstitial epithelium [3, 4]. Central to disease progression is glomerular injury, with pathological changes including glomerular hypertrophy, glomerular basement membrane (GBM) thickening, mesangial matrix expansion, and subsequent glomerulosclerosis [3]. Podocytes are critical to the functional glomerular filtration barrier and are particularly sensitive to damage by the “diabetic milieu” of dysglycemia, dyslipidemia, hemodynamic changes, and inflammation [5, 6]. In

References

[1]  A. J. Collins, R. N. Foley, B. Chavers, et al., “US renal data system 2011 Annual data report,” American Journal of Kidney Diseases, vol. 59, no. 1, pp. e1–e26, 2012.
[2]  A. Whaley-Connell, J. R. Sowers, P. A. McCullough et al., “Diabetes mellitus and CKD awareness: the kidney early evaluation program (KEEP) and national health and nutrition examination survey (NHANES),” American Journal of Kidney Diseases, vol. 53, no. 4, pp. S11–S21, 2009.
[3]  P. Fioretto and M. Mauer, “Histopathology of diabetic nephropathy,” Seminars in Nephrology, vol. 27, no. 2, pp. 195–207, 2007.
[4]  T. W. C. Tervaert, A. L. Mooyaart, K. Amann et al., “Pathologic classification of diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 21, no. 4, pp. 556–563, 2010.
[5]  G. R. Reddy, K. Kotlyarevska, R. F. Ransom, and R. K. Menon, “The podocyte and diabetes mellitus: is the podocyte the key to the origins of diabetic nephropathy?” Current Opinion in Nephrology and Hypertension, vol. 17, no. 1, pp. 32–36, 2008.
[6]  H. Makino, Y. Miyamoto, K. Sawai et al., “Altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone,” Diabetes, vol. 55, no. 10, pp. 2747–2756, 2006.
[7]  M. Toyoda, B. Najafian, Y. Kim, M. L. Caramori, and M. Mauer, “Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy,” Diabetes, vol. 56, no. 8, pp. 2155–2160, 2007.
[8]  M. E. Pagtalunan, P. L. Miller, S. Jumping-Eagle et al., “Podocyte loss and progressive glomerular injury in type II diabetes,” Journal of Clinical Investigation, vol. 99, no. 2, pp. 342–348, 1997.
[9]  K. E. White, R. W. Bilous, and On Behalf of the Diabiopsies Study Group, “Structural alterations to the podocyte are related to proteinuria in type 2 diabetic patients,” Nephrology Dialysis Transplantation, vol. 19, no. 6, pp. 1437–1440, 2004.
[10]  M. D. Breyer, E. B?ttinger, F. C. Brosius et al., “Mouse models of diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 16, no. 1, pp. 27–45, 2005.
[11]  F. C. Brosius, C. E. Alpers, E. P. Bottinger et al., “Mouse models of diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 20, no. 12, pp. 2503–2512, 2009.
[12]  C. Rüster and G. Wolf, “Models of diabetic nephropathy,” Drug Discovery Today, vol. 7, no. 1-2, pp. 35–41, 2010.
[13]  M. J. Soler, M. Riera, and D. Batlle, “New experimental models of diabetic nephropathy in mice models of type 2 diabetes: efforts to replicate human nephropathy,” Experimental Diabetes Research, vol. 2012, Article ID 218917, 9 pages, 2012.
[14]  M. D. Breyer, “Progress in progression?” Journal of the American Society of Nephrology, vol. 21, no. 9, pp. 1414–1416, 2010.
[15]  D. Schl?ndorff, “Choosing the right mouse model for diabetic nephropathy,” Kidney International, vol. 77, no. 9, pp. 749–750, 2010.
[16]  A. R. Diani, G. A. Sawada, B. A. Hannah et al., “Analysis of pancreatic islet cells and hormone content in the spontaneously diabetic KK mouse by morphometry, immunocytochemistry and radioimmunoassay,” Virchows Archiv, vol. 412, no. 1, pp. 53–61, 1987.
[17]  G. Chakraborty, S. Thumpayil, D. E. Lafontant, W. Woubneh, and J. H. Toney, “Age dependence of glucose tolerance in adult KK-A y mice, a model of non-insulin dependent diabetes mellitus,” Lab Animal, vol. 38, no. 11, pp. 364–368, 2009.
[18]  T. Yamazaki, M. Tanimoto, T. Gohda et al., “Combination effects of enalapril and losartan on lipid peroxidation in the kidneys of KK- /Ta mice,” Nephron, vol. 113, no. 2, pp. e66–e76, 2009.
[19]  A. R. Diani, G. A. Sawada, N. Y. Zhang et al., “The KKA(y) mouse: a model for the rapid development of glomerular capillary basement membrane thickening,” Blood Vessels, vol. 24, no. 6, pp. 297–303, 1987.
[20]  M. Okazaki, Y. Saito, Y. Udaka et al., “Diabetic nephropathy in KK and KK- mice,” Experimental Animals, vol. 51, no. 2, pp. 191–196, 2002.
[21]  T. Ito, M. Tanimoto, K. Yamada et al., “Glomerular changes in the KK- /Ta mouse: a possible model for human type 2 diabetic nephropathy,” Nephrology, vol. 11, no. 1, pp. 29–35, 2006.
[22]  T. Shiuchi, T. X. Cui, L. Wu et al., “ACE inhibitor improves insulin resistance in diabetic mouse via bradykinin and NO,” Hypertension, vol. 40, no. 3, pp. 329–334, 2002.
[23]  M. Sasaki, S. Uehara, H. Ohta et al., “Losartan ameliorates progression of glomerular structural changes in diabetic KK mice,” Life Sciences, vol. 75, no. 7, pp. 869–880, 2004.
[24]  M. Matsumoto, M. Tanimoto, T. Gohda et al., “Effect of pitavastatin on type 2 diabetes mellitus nephropathy in KK- /Ta mice,” Metabolism, vol. 57, no. 5, pp. 691–697, 2008.
[25]  I. Ohara, M. Tanimoto, T. Gohda et al., “Effect of combination therapy with angiotensin receptor blocker and 1,25-dihydroxyvitamin D3 in type 2 diabetic nephropathy in KK-A y/Ta mice,” Nephron, vol. 117, no. 4, pp. e124–e132, 2011.
[26]  L. F. Fried, W. Duckworth, J. H. Zhang et al., “Design of combination angiotensin receptor blocker and angiotensin- converting enzyme inhibitor for treatment of diabetic nephropathy (VA NEPHRON-D),” Clinical Journal of the American Society of Nephrology, vol. 4, no. 2, pp. 361–368, 2009.
[27]  H.-H. Parving, B. M. Brenner, J. J. V. McMurray et al., “Aliskiren trial in type 2 diabetes using cardio-renal endpoints (ALTITUDE): rationale and study design,” Nephrology Dialysis Transplantation, vol. 24, no. 5, pp. 1663–1671, 2009.
[28]  J. I. Suto, S. Matsuura, K. Imamura, H. Yamanaka, and K. Sekikawa, “Genetic analysis of non-insulin-dependent diabetes mellitus in KK and KK-A(y) mice,” European Journal of Endocrinology, vol. 139, no. 6, pp. 654–661, 1998.
[29]  H. Ninomiya, T. Inomata, and K. Ogihara, “Obstructive uropathy and hydronephrosis in male KK- mice: a report of cases,” Journal of Veterinary Medical Science, vol. 61, no. 1, pp. 53–57, 1999.
[30]  M. Nakamura and K. Yamada, “Studies on a diabetic (KK) strain of the mouse,” Diabetologia, vol. 3, no. 2, pp. 212–221, 1967.
[31]  B. Becker, F. Kronenberg, J. T. Kielstein et al., “Renal insulin resistance syndrome, adiponectin and cardiovascular events in patients with kidney disease: the mild and moderate kidney disease study,” Journal of the American Society of Nephrology, vol. 16, no. 4, pp. 1091–1098, 2005.
[32]  H. Ha, E. Y. Oh, and H. B. Lee, “The role of plasminogen activator inhibitor 1 in renal and cardiovascular diseases,” Nature Reviews Nephrology, vol. 5, no. 4, pp. 203–211, 2009.
[33]  J. H. Chang, S. Y. Paik, L. Mao, et al., “Diabetic kidney disease in FVB/NJ Akita mice: temporal pattern of kidney injury and urinary nephrin excretion,” PLoS ONE, vol. 7, no. 4, Article ID e33942.
[34]  Y. Wang, S. Zhao, S. Loyd, and L. J. Groome, “Increased urinary excretion of nephrin, podocalyxin, and betaig-h3 in women with preeclampsia,” American Journal of Physiology, vol. 302, no. 9, pp. F1084–F1089, 2012.
[35]  V. S. Vaidya, V. Ramirez, T. Ichimura, N. A. Bobadilla, and J. V. Bonventre, “Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury,” American Journal of Physiology, vol. 290, no. 2, pp. F517–F529, 2006.
[36]  V. S. Sabbisetti, K. Ito, C. Wang, et al., “Novel assays for detection of urinary Kim-1 in mouse models of kidney injury,” Toxicological Sciences, vol. 131, no. 1, pp. 13–25, 2013.
[37]  P. Ronco, “Proteinuria: is it all in the foot?” Journal of Clinical Investigation, vol. 117, no. 8, pp. 2079–2082, 2007.
[38]  V. D. D'Agati, “Podocyte injury in focal segmental glomerulosclerosis: lessons from animal models (a play in five acts),” Kidney International, vol. 73, no. 4, pp. 399–406, 2008.
[39]  F. T. H. Lee, Z. Cao, D. M. Long et al., “Interactions between angiotensin II and NF-κB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 15, no. 8, pp. 2139–2151, 2004.
[40]  M. Nagata, K. Scharer, and W. Kriz, “Glomerular damage after uninephrectomy in young rats. I. Hypertrophy and distortion of capillary architecture,” Kidney International, vol. 42, no. 1, pp. 136–147, 1992.
[41]  J. M. Turner, C. Bauer, M. K. Abramowitz, M. L. Melamed, and T. H. Hostetter, “Treatment of chronic kidney disease,” Kidney International, vol. 81, pp. 351–362, 2012.
[42]  J. A. Chavez and S. A. Summers, “Lipid oversupply, selective insulin resistance, and lipotoxicity: molecular mechanisms,” Biochimica et Biophysica Acta, vol. 1801, no. 3, pp. 252–265, 2010.
[43]  M. N. Jensen and M. Ritskes-Hoitinga, “How isoflavone levels in common rodent diets can interfere with the value of animal models and with experimental results,” Laboratory Animals, vol. 41, no. 1, pp. 1–18, 2007.
[44]  K. D. R. Setchell, “Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones,” American Journal of Clinical Nutrition, vol. 68, supplement 6, pp. 1333S–1346S, 1998.
[45]  K. Sharma, S. RamachandraRao, G. Qiu et al., “Adiponectin regulates albuminuria and podocyte function in mice,” Journal of Clinical Investigation, vol. 118, no. 5, pp. 1645–1656, 2008.
[46]  A. A. Eddy and A. B. Fogo, “Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action,” Journal of the American Society of Nephrology, vol. 17, no. 11, pp. 2999–3012, 2006.
[47]  R. B. Goldberg, “Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 9, pp. 3171–3182, 2009.
[48]  D. P. K. Ng, B. C. Tai, E. Tan et al., “Nephrinuria associates with multiple renal traits in type 2 diabetes,” Nephrology Dialysis Transplantation, vol. 26, no. 8, pp. 2508–2514, 2011.
[49]  M. A. Saleh, E. I. Boesen, J. S. Pollock, V. J. Savin, and D. M. Pollock, “Endothelin receptor A-specific stimulation of glomerular inflammation and injury in a streptozotocin-induced rat model of diabetes,” Diabetologia, vol. 54, no. 4, pp. 979–988, 2011.
[50]  Group CKDW, “VA/DoD clinical practice guideline for the management of chronic kidney disease in primary care. Version 2.0,” in Veterans Health Administration (VHA) DoVAV, Department of Defense (DoD), Ed., Veterans Health Administration and Department of Defense, Washingon DC, USA, 2008.
[51]  National Kidney Foundation, “K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification,” American Journal of Kidney Diseases, vol. 39, no. 2, supplement 1, pp. S1–S266, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133