全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Effect of Food Hardness on the Development of Dental Caries in Alloxan-Induced Diabetic Rats

DOI: 10.1155/2013/787084

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have previously shown that dental caries may be produced in diabetic rodent models fed with noncariogenic standard diets; however, many studies usually add large amounts of sugar to the diet to induce dental caries. Moreover, the physical properties of cariogenic diets have been reported as an important factor in the formation of caries. The aim of this study was to clarify the effect of the hardness of non-cariogenic diets on the development of dental caries in diabetic rodents. Seven-week-old female F344 rats were divided into 4 groups: intact rats fed with a standard pelletized or powdered diet and alloxan-induced diabetic rats fed with a standard pelletized or powdered diet. All of the rats were sacrificed at 52 weeks of age for morphological examinations on their dental tissue. Dental caries had developed and extended to all the molars in the diabetic rats that were fed with both the pelletized and powdered diets. Moreover, the lesion was significantly enhanced in the powdered diet group compared to that in the pelletized diet group. In conclusion, food hardness is an important factor influencing the development of dental caries in diabetic rats. 1. Introduction We recently demonstrated that diabetes directly induced dental caries in rats and mice, although a direct association between the 2 was less evident and conflicting in humans [1–4]. We demonstrated that dental caries were produced using noncariogenic diets with a low concentration of sugar in diabetic rodent models [5–7], although many studies usually add large amounts of sugar to the diet to induce dental caries [8, 9]. In addition, early studies on the production of experimental dental caries have reported the effects of physical properties of cariogenic diets with high concentrations of sugar on dental caries. These studies mainly used finely ground cariogenic diet [10–13] because it is more cariogenic compared to a coarsely ground diet in rodents. Moreover, hard and coarse foods have the ability to prevent caries [14–17]. Thus, modifying the dietary formulation may possibly enhance or reduce caries development in diabetic animals. However, no reports have investigated the effects of the physical properties of non-cariogenic standard diets on dental caries in diabetic animals. Currently, 2 types of non-cariogenic standard diet formulations (i.e., powdered and pelletized diets) are widely used in experimental rodents. In the present study, we compared the effects of these diets on the development of dental caries in a diabetic rodent model focusing on the difference in hardness between

References

[1]  P. Canepari, N. Zerman, and G. Cavalleri, “Lack of correlation between salivary Streptococcus mutans and lactobacilli counts and caries in IDDM children,” Minerva Stomatologica, vol. 43, no. 11, pp. 501–505, 1994.
[2]  L. Iughetti, R. Marino, M. F. Bertolani, and S. Bernasconi, “Oral health in children and adolescents with IDDM—a review,” Journal of Pediatric Endocrinology and Metabolism, vol. 12, no. 5, pp. 603–610, 1999.
[3]  L. Miralles, F. J. Silvestre, A. Hernández-Mijares, D. Bautista, F. Llambes, and D. Grau, “Dental caries in type 1 diabetics: influence of systemic factors of the disease upon the development of dental caries,” Medicina Oral, Patologia Oral y Cirugia Bucal, vol. 11, no. 3, pp. 162–166, 2006.
[4]  I. B. Lamster, E. Lalla, W. S. Borgnakke, and G. W. Taylor, “The relationship between oral health and diabetes mellitus,” Journal of the American Dental Association, vol. 139, no. 10, pp. 19S–24S, 2008.
[5]  Y. Kodama, M. Matsuura, T. Sano et al., “Diabetes enhances dental caries and apical periodontitis in caries-susceptible WBN/KobSlc rats,” Canadian Journal of Comparative Medicine, vol. 61, pp. 53–59, 2011.
[6]  T. Sano, T. Matsuura, K. Ozaki, and I. Narama, “Dental caries and Caries-Related periodontitis in type 2 diabetic mice,” Veterinary Pathology, vol. 48, no. 2, pp. 506–512, 2011.
[7]  Y. Nakahara, T. Sano, Y. Kodama, K. Ozaki, and T. Matsuura, “Alloxan-induced hyperglycemia causes rapid-onset and progressive dental caries and periodontitis in F344 rats,” Histology and Histopathology, vol. 27, pp. 1297–1306, 2012.
[8]  C. F. Mc, “Observations on induced caries in rats, effects of excessive sugar in the diet,” Journal of Dental Research, vol. 24, pp. 239–245, 1945.
[9]  J. M. Navia and H. Lopez, “Sources of variability in rat caries studies: weaning age and diet fed during tooth eruption,” Journal of Dental Research, vol. 56, no. 3, pp. 222–227, 1977.
[10]  R. F. Sognnaes, “Experimental rat caries; location, sequence and extent of carious lesions produced in the Norway rat when raised on a generally adequate, finely powdered, purified ration,” The Journal of nutrition, vol. 39, no. 2, pp. 139–146, 1949.
[11]  R. L. Hartles, F. E. Lawton, and G. L. Slack, “Experimental dental caries in the albino rat, the production of carious lesions in animals maintained on a finely powdered purified diet containing 67% sucrose,” British Journal of Nutrition, vol. 10, pp. 234–240, 1956.
[12]  J. H. Shaw, “Effects of dietary composition on tooth decay in the albino rat,” The Journal of Nutrition, vol. 41, no. 1, pp. 13–24, 1950.
[13]  G. Frostell, P. H. Keyes, and R. H. Larson, “Effect of various sugars and sugar substitutes on dental caries in hamsters and rats,” Journal of Nutrition, vol. 93, no. 1, pp. 65–76, 1967.
[14]  W. H. Stewart, C. A. Hoppert, and H. R. Hunt, “The incidence of dental caries in caries-susceptible and caries-resistant albino rats (Rattus norvegicus) when fed diets containing granulated and powdered sucrose,” Journal of Dental Research, vol. 32, pp. 210–214, 1953.
[15]  K. G. K?nig, “Effects of mastication and particle size of corn and sugar diets on caries-incidence in rats,” Archives of Oral Biology, vol. 6, no. C, pp. 214–220, 1961.
[16]  A. Str?lfors, H. Thilander, and A. Bergenholtz, “Caries and periodontal disease in hamsters fed cereal foods varying in sugar content and hardness,” Archives of Oral Biology, vol. 12, no. 12, pp. 1361–1365, 1967.
[17]  R. L. Hartles and S. A. Leach, “Effect of diet on dental caries,” British Medical Bulletin, vol. 31, no. 2, pp. 137–141, 1975.
[18]  L. K. Butler, “Regulation of blood glucose levels in normal and diabetic rats,” in Tested Studies for Laboratory Teaching, C. A. Goldman, Ed., vol. 16, pp. 181–202, Proceedings of the 16th Workshop/Conference of the Association for Biology Laboratory Education (ABLE), 1995.
[19]  R. C. Caldwell, “Physical properties of foods and their caries-producing potential,” Journal of Dental Research, vol. 49, no. 6, pp. 1293–1298, 1970.
[20]  D. Kandelman, “Sugar, alternative sweeteners and meal frequency in relation to caries prevention: new perspectives,” British Journal of Nutrition, vol. 77, no. 1, pp. S121–S128, 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133