全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Effect of Diabetes-Associated Autoantigens on Cell Processes in Human PBMCs and Their Relevance to Autoimmune Diabetes Development

DOI: 10.1155/2013/589451

Full-Text   Cite this paper   Add to My Lib

Abstract:

Type 1 Diabetes (T1D) is considered to be a T-helper- (Th-) 1 autoimmune disease; however, T1D pathogenesis likely involves many factors, and sufficient tools for autoreactive T cell detection for the study of this disease are currently lacking. In this study, using gene expression microarrays, we analysed the effect of diabetes-associated autoantigens on peripheral blood mononuclear cells (PBMCs) with the purpose of identifying (pre)diabetes-associated cell processes. Twelve patients with recent onset T1D, 18 first-degree relatives of the TD1 patients (DRL; 9/18 autoantibody positive), and 13 healthy controls (DV) were tested. PBMCs from these individuals were stimulated with a cocktail of diabetes-associated autoantigens (proinsulin, IA-2, and GAD65-derived peptides). After 72 hours, gene expression was evaluated by high-density gene microarray. The greatest number of functional differences was observed between relatives and controls (69 pathways), from which 15% of the pathways belonged to “immune response-related” processes. In the T1D versus controls comparison, more pathways (24%) were classified as “immune response-related.” Important pathways that were identified using data from the T1D versus controls comparison were pathways involving antigen presentation by MHCII, the activation of Th17 and Th22 responses, and cytoskeleton rearrangement-related processes. Genes involved in Th17 and TGF-beta cascades may represent novel, promising (pre)diabetes biomarkers. 1. Introduction Type 1 Diabetes (T1D) is considered to be a T-helper- (Th-) 1 autoimmune disease and is characterised by a lack of insulin, which is caused by the autoimmune destruction of insulin-producing pancreatic beta cells [1, 2]. Th1 lymphocytes are responsible for the infiltration of the islets of Langerhans and for the cytokine release that facilitates the destruction of beta cells by cytotoxic (Tc) lymphocytes. Due to this progressive damage, there is either insufficient or no production of insulin, leading to the first clinical signs of T1D. At the first appearance of clinical symptoms, most notably those associated with hyperglycaemia, nearly 80% of the beta cells have been destroyed, rendering the individual dependent on insulin injections [2, 3]. In patients presenting with recent T1D onset, there are various interventions that may stop, or at least delay, pancreatic beta cell destruction; however, these therapies are unable to reverse the patient’s lifelong dependency on insulin injections because beta cell proliferation and their capacity for regeneration are limited. To save

References

[1]  L. Castano and G. S. Eisenbarth, “Type-I diabetes: a chronic autoimmune disease of human, mouse, and rat,” Annual Review of Immunology, vol. 8, pp. 647–679, 1990.
[2]  A. K. Foulis, M. A. Farquharson, and A. Meager, “Immunoreactive α-interferon in insulin-secreting β cells in type 1 diabetes mellitus,” The Lancet, vol. 2, no. 8573, pp. 1423–1427, 1987.
[3]  M. A. Atkinson, D. L. Kaufman, L. Campbell et al., “Response of peripheral-blood mononuclear cells to glutamate decarboxylase in insulin-dependent diabetes,” The Lancet, vol. 339, no. 8791, pp. 458–459, 1992.
[4]  T. Staeva-Vieira, M. Peakman, and M. von Herrath, “Translational mini-review series on type 1 diabetes: immune-based therapeutic approaches for type 1 diabetes,” Clinical and Experimental Immunology, vol. 148, no. 1, pp. 17–31, 2007.
[5]  J. Ludvigsson, M. Faresj?, M. Hjorth et al., “GAD treatment and insulin secretion in recent-onset type 1 diabetes,” New England Journal of Medicine, vol. 359, no. 18, pp. 1909–1920, 2008.
[6]  J. Ludvigsson, “Therapy with GAD in diabetes,” Diabetes/Metabolism Research and Reviews, vol. 25, no. 4, pp. 307–315, 2009.
[7]  P. J. Bingley, A. J. K. Williams, and E. A. M. Gale, “Optimized autoantibody-based risk assessment in family members: implications for future intervention trials,” Diabetes Care, vol. 22, no. 11, pp. 1796–1801, 1999.
[8]  P. Achenbach, E. Bonifacio, and A. Ziegler, “Predicting type 1 diabetes,” Current Diabetes Reports, vol. 5, no. 2, pp. 98–103, 2005.
[9]  J. M. Wenzlau, L. M. Frisch, T. J. Gardner, S. Sarkar, J. C. Hutton, and H. W. Davidson, “Novel antigens in type 1 diabetes: the importance of ZnT8,” Current Diabetes Reports, vol. 9, no. 2, pp. 105–112, 2009.
[10]  M. A. Atkinson and G. S. Eisenbarth, “Type 1 diabetes: new perspectives on disease pathogenesis and treatment,” The Lancet, vol. 358, no. 9277, pp. 221–229, 2001.
[11]  L. Saudková and F. Saudek, “Possibilities of preclinical type-1 diabetes diagnostics and methods of detection of autoreactive T cells,” Diabetologie Metabolismus Endokrinologie Vyziva, vol. 6, no. 2, pp. 70–78, 2003.
[12]  B. O. Roep, “The role of T-cells in the pathogenesis of Type 1 diabetes: from cause to cure,” Diabetologia, vol. 46, no. 3, pp. 305–321, 2003.
[13]  T. I. M. Tree and M. Peakman, “Autoreactive T cells in human type 1 diabetes,” Endocrinology and Metabolism Clinics of North America, vol. 33, no. 1, pp. 113–133, 2004.
[14]  G. F. Bottazzo, B. M. Dean, and J. M. McNally, “In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis,” New England Journal of Medicine, vol. 313, no. 6, pp. 353–360, 1985.
[15]  S. Lindley, C. M. Dayan, A. Bishop, B. O. Roep, M. Peatman, and T. I. M. Tree, “Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes,” Diabetes, vol. 54, no. 1, pp. 92–99, 2005.
[16]  E. C. Kaizer, C. L. Glaser, D. Chaussabel, J. Banchereau, V. Pascual, and P. C. White, “Gene expression in peripheral blood mononuclear cells from children with diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 9, pp. 3705–3711, 2007.
[17]  Z. Vrabelova, S. Kolouskova, K. B?hmova et al., “Protein microarray analysis as a tool for monitoring cellular autoreactivity in type 1 diabetes patients and their relatives,” Pediatric Diabetes, vol. 8, no. 5, pp. 252–260, 2007.
[18]  D. J. Irvine, M. A. Purbhoo, M. Krogsgaard, and M. M. Davis, “Direct observation of ligand recognition by T cells,” Nature, vol. 419, no. 6909, pp. 845–849, 2002.
[19]  T. Korn, E. Bettelli, M. Oukka, and V. K. Kuchroo, “IL-17 and Th17 cells,” Annual Review of Immunology, vol. 27, pp. 485–517, 2009.
[20]  V. S. Costa, T. C. C. Mattana, and M. E. R. da Silva, “Unregulated IL-23/IL-17 immune response in autoimmune diseases,” Diabetes Research and Clinical Practice, vol. 88, no. 3, pp. 222–226, 2010.
[21]  K. Stechova, K. Bohmova, Z. Vrabelova et al., “High T-helper-1 cytokines but low T-helper-3 cytokines, inflammatory cytokines and chemokines in children with high risk of developing type 1 diabetes,” Diabetes/Metabolism Research and Reviews, vol. 23, no. 6, pp. 462–471, 2007.
[22]  A. Ryden, K. Stechova, M. Durilova, and M. Faresj?, “Switch from a dominant Th1-associated immune profile during the pre-diabetic phase in favour of a temporary increase of a Th3-associated and inflammatory immune profile at the onset of type 1 diabetes,” Diabetes/Metabolism Research and Reviews, vol. 25, no. 4, pp. 335–343, 2009.
[23]  N. Martin-Orozco, Y. Chung, S. H. Chang, Y. Wang, and C. Dong, “Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells,” European Journal of Immunology, vol. 39, no. 1, pp. 216–224, 2009.
[24]  D. Bending, H. De La Pe?a, M. Veldhoen et al., “Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice,” Journal of Clinical Investigation, vol. 119, no. 3, pp. 565–572, 2009.
[25]  L. Yang, D. E. Anderson, C. Baecher-Allan et al., “IL-21 and TGF-β are required for differentiation of human T H17 cells,” Nature, vol. 454, no. 7202, pp. 350–352, 2008.
[26]  N. Manel, D. Unutmaz, and D. R. Littman, “The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt,” Nature Immunology, vol. 9, no. 6, pp. 641–649, 2008.
[27]  E. Volpe, N. Servant, R. Zollinger et al., “A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses,” Nature Immunology, vol. 9, no. 6, pp. 650–657, 2008.
[28]  E. V. Acosta-Rodriguez, G. Napolitani, A. Lanzavecchia, and F. Sallusto, “Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells,” Nature Immunology, vol. 8, no. 9, pp. 942–949, 2007.
[29]  E. M. Bradshaw, K. Raddassi, W. Elyaman et al., “Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells,” Journal of Immunology, vol. 183, no. 7, pp. 4432–4439, 2009.
[30]  G. Beriou, E. M. Bradshaw, E. Lozano et al., “TGF-β induces IL-9 production from human Th17 cells,” Journal of Immunology, vol. 185, no. 1, pp. 46–54, 2010.
[31]  S. Sinha and W. Yang, “Cellular signaling for activation of Rho GTPase Cdc42,” Cellular Signalling, vol. 20, no. 11, pp. 1927–1934, 2008.
[32]  A. Kowluru, “Small G proteins in islet β-cell function,” Endocrine Reviews, vol. 31, no. 1, pp. 52–78, 2010.
[33]  A. J. McKnight, K. A. Pettigrew, C. C. Patterson, J. Kilner, D. M. Sadlier, and A. P. Maxwell, “Investigation of the association of BMP gene variants with nephropathy in Type 1 diabetes mellitus,” Diabetic Medicine, vol. 27, no. 6, pp. 624–630, 2010.
[34]  P. E. Westerweel, C. T. J. van Velthoven, T. Q. Nguyen et al., “Modulation of TGF-β/BMP-6 expression and increased levels of circulating smooth muscle progenitor cells in a type I diabetes mouse model,” Cardiovascular Diabetology, vol. 9, p. 55, 2010.
[35]  K. Stechova, M. Kolar, R. Blatny et al., “Healthy first-degree relatives of patients with type 1 diabetes exhibit significant differences in basal gene expression pattern of immunocompetent cells compared to controls: expression pattern as predeterminant of autoimmune diabetes,” Scandinavian Journal of Immunology, vol. 75, no. 2, pp. 210–219, 2012.
[36]  F. Reynier, A. Pachot, M. Paye et al., “Specific gene expression signature associated with development of autoimmune type-I diabetes using whole-blood microarray analysis,” Genes and Immunity, vol. 11, no. 3, pp. 269–278, 2010.
[37]  R. Planas, R. Pujol-Borrell, and M. Vives-Pi, “Global gene expression changes in type 1 diabetes: insights into autoimmune response in the target organ and in the periphery,” Immunology Letters, vol. 133, no. 2, pp. 55–61, 2010.
[38]  K. Stechova, Z. Halbhuber, M. Hubackova et al., “Case report: type 1 diabetes in monozygotic quadruplets,” European Journal of Human Genetics, vol. 20, no. 4, pp. 457–462, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133