Diabetic nephropathy (DN) is one of the microvascular complications of both type 1 and type 2 diabetes, which is also associated with a poor life expectancy of diabetic patients. However, the pathogenesis of DN is still unclear. Thus, it is of great use to establish appropriate animal models of DN for doing research on pathogenesis and developing novel therapeutic strategies. Although a large number of murine models of DN including artificially induced, spontaneous, and genetically engineered (knockout and transgenic) animal models have been developed, none of them develops renal changes sufficiently reflecting those seen in humans. Here we review the identified murine models of DN from the aspects of genetic background, type of diabetes, method of induction, gene deficiency, animal age and gender, kidney histopathology, and phenotypic alterations in the hope of enhancing our comprehension of genetic susceptibility and molecular mechanisms responsible for this disease and providing new clues as to how to choose appropriate animal models of DN. 1. Introduction DN, as one complication of diabetes, is one of the leading causes of end-stage renal disease (ESRD) worldwide. The value of animal models in the study of pathogenesis is beyond doubt. Although great progress has been made in the study of animal models, none of the models can reproduce all the structural and functional changes of human DN. Murine models have substantial advantages over other species in the studies on pathogenesis of DN, including lower cost, murine repositories that bear multiple mutations, plentiful inbred strains, and an available map of murine genomic sequence on the Internet. The Animal Models of Diabetic Complications Consortium (AMDCC) proposes the following three criteria for a desirable murine model of DN: (1) more than 50% decline in glomerular filtration rate (GFR) over the lifetime of the animal; (2) greater than 10-fold increase in albuminuria compared with controls for that strain at the same age and gender; (3) histopathology findings which include mesangial sclerosis (a 50% increase in mesangial volume), any degree of arteriolar hyalinosis, glomerular basement membrane (GBM) thickening (a >25% increase compared with baseline by electron microscopy morphometry), and tubulointerstitial fibrosis. In fact, there are no murine models that meet all of the three criteria. Here we review the identified murine models of DN including artificially induced, spontaneous, and genetically engineered (knockout and transgenic) animal models and compare their advantages and
References
[1]
T. Szkudelski, “The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas,” Physiological Research, vol. 50, no. 6, pp. 537–546, 2001.
[2]
S. Lenzen, “The mechanisms of alloxan- and streptozotocin-induced diabetes,” Diabetologia, vol. 51, no. 2, pp. 216–226, 2008.
[3]
K. Susztak, K. Sharma, M. Schiffer, P. McCue, E. Ciccone, and E. P. B?ttinger, “Genomic strategies for diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 14, no. 3, pp. S271–S278, 2003.
[4]
G. H. Tesch and T. J. Allen, “Rodent models of streptozotocin-induced diabetic nephropathy (methods in renal research),” Nephrology, vol. 12, no. 3, pp. 261–266, 2007.
[5]
S. Itagaki, E. Nishida, M.-J. Lee, and K. Doi, “Histopathology of subacute renal lesions in mice induced by streptozotocin,” Experimental and Toxicologic Pathology, vol. 47, no. 6, pp. 485–491, 1995.
[6]
A. G. Farr, J. W. Mannschreck, and S. K. Anderson, “Expression of Ia antigens by murine kidney epithelium after exposure to streptozotocin,” American Journal of Pathology, vol. 126, no. 3, pp. 561–568, 1987.
[7]
P. Schmezer, C. Eckert, and U. M. Liegibel, “Tissue-specific induction of mutations by streptozotocin in vivo,” Mutation Research, vol. 307, no. 2, pp. 495–499, 1994.
[8]
M. Hall-Craggs, D. E. Brenner, R. D. Vigorito, and J. C. Sutherland, “Acute renal failure and renal tubular squamous metaplasia following treatment with streptozotocin,” Human Pathology, vol. 13, no. 6, pp. 597–601, 1982.
[9]
Y. Tay, Y. Wang, L. Kairaitis, G. K. Rangan, C. Zhang, and D. C. H. Harris, “Can murine diabetic nephropathy be separated from superimposed acute renal failure?” Kidney International, vol. 68, no. 1, pp. 391–398, 2005.
[10]
M. D. Breyer, E. Bottinger, F. C. Brosius III, et al., “Mouse models of diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 16, no. 1, pp. 27–45, 2005.
[11]
A. R. Kraynak, R. D. Storer, R. D. Jensen et al., “Extent and persistence of streptozotocin-induced DNA damage and cell proliferation in rat kidney as determined by in vivo alkaline elution and BrdUrd labeling assays,” Toxicology and Applied Pharmacology, vol. 135, no. 2, pp. 279–286, 1995.
[12]
E. H. Leiter, “Multiple low-dose streptozotocin-induced hyperglycemia and insulitis in C57BL mice: influence of inbred background, sex, and thymus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 2, pp. 630–634, 1982.
[13]
E. H. Leiter, “Differential susceptibility of BALB/c sublines to diabetes induction by multi-dose streptozotocin treatment,” Current Topics in Microbiology and Immunology, vol. 122, pp. 78–85, 1985.
[14]
S. Sun, Y. Wang, Q. Li, Y. Tian, M. Liu, and Y. Yu, “Effects of benazepril on renal function and kidney expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in diabetic rats,” Chinese Medical Journal, vol. 119, no. 10, pp. 814–821, 2006.
[15]
A. A. Like, M. C. Appel, R. M. Williams, and A. A. Rossini, “Streptozotocin-induced pancreatic insulitis in mice morphologic and physiologic studies,” Laboratory Investigation, vol. 38, no. 4, pp. 470–486, 1978.
[16]
A. A. Like and A. A. Rossini, “Streptozotocin induced pancreatic insulitis: new model of diabetes mellitus,” Science, vol. 193, no. 4251, pp. 415–417, 1976.
[17]
A. A. Rossini, M. C. Appel, R. M. Williams, and A. A. Like, “Genetic influence of the streptozotocin-induced insulitis and hyperglycemia,” Diabetes, vol. 26, no. 10, pp. 916–920, 1977.
[18]
S. B. Gurley, S. E. Clare, K. P. Snow, A. Hu, T. W. Meyer, and T. M. Coffman, “Impact of genetic background on nephropathy in diabetic mice,” American Journal of Physiology, vol. 290, no. 1, pp. F214–F222, 2006.
[19]
W. Huang, Y. Gallois, N. Bouby et al., “Genetically increased angiotensin I-converting enzyme level and renal complications in the diabetic mouse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 23, pp. 13330–13334, 2001.
[20]
K. Susztak, E. B?ttinger, A. Novetsky et al., “Molecular profiling of diabetic mouse kidney reveals novel genes linked to glomerular disease,” Diabetes, vol. 53, no. 3, pp. 784–794, 2004.
[21]
R. S. Surwit, M. N. Feinglos, J. Rodin et al., “Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice,” Metabolism, vol. 44, no. 5, pp. 645–651, 1995.
[22]
R. S. Surwit, C. M. Kuhn, C. Cochrane, J. A. McCubbin, and M. N. Feinglos, “Diet-induced type II diabetes in C57BL/6J mice,” Diabetes, vol. 37, no. 9, pp. 1163–1167, 1988.
[23]
A. E. Petro, J. Cotter, D. A. Cooper, J. C. Peters, S. J. Surwit, and R. S. Surwit, “Fat, carbohydrate, and calories in the development of diabetes and obesity in the C57BL/6J mouse,” Metabolism, vol. 53, no. 4, pp. 454–457, 2004.
[24]
S. A. Schreyer, D. L. Wilson, and R. C. Leboeuf, “C57BL/6 mice fed high fat diets as models for diabetes-accelerated atherosclerosis,” Atherosclerosis, vol. 136, no. 1, pp. 17–24, 1998.
[25]
D. A. Towler, M. Bidder, T. Latifi, T. Coleman, and C. F. Semenkovich, “Diet-induced diabetes activates an osteogenic gene regulatory program in the aortas of low density lipoprotein receptor-deficient mice,” Journal of Biological Chemistry, vol. 273, no. 46, pp. 30427–30434, 1998.
[26]
J. Mu, J. K. Naggert, K. L. Svenson et al., “Quantitative trait loci analysis for the differences in susceptibility to atherosclerosis and diabetes between inbred mouse strains C57BL/6J and C57BLKS/J,” Journal of Lipid Research, vol. 40, no. 7, pp. 1328–1335, 1999.
[27]
M. Sugano, H. Yamato, T. Hayashi et al., “High-fat diet in low-dose-streptozotocin-treated heminephrectomized rats induces all features of human type 2 diabetic nephropathy: a new rat model of diabetic nephropathy,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 16, no. 7, pp. 477–484, 2006.
[28]
S. Makino, K. Kunimoto, Y. Muraoka, Y. Mizushima, K. Katagiri, and Y. Tochino, “Breeding of a non-obese, diabetic strain of mice,” Jikken Dobutsu, vol. 29, no. 1, pp. 1–13, 1980.
[29]
C. E. Mathews, “Utility of murine models for the study of spontaneous autoimmune type 1 diabetes,” Pediatric Diabetes, vol. 6, no. 3, pp. 165–177, 2005.
[30]
L. S. Wicker, G. Chamberlain, K. Hunter et al., “Fine mapping, gene content, comparative sequencing, and expression analyses support Ctla4 and Nramp1 as candidates for Idd5.1 and Idd5.2 in the nonobese diabetic mouse,” Journal of Immunology, vol. 173, no. 1, pp. 164–173, 2004.
[31]
J. P. Driver, D. V. Serreze, and Y. Chen, “Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease,” Seminars in Immunopathology, vol. 33, no. 1, pp. 67–87, 2011.
[32]
T. Doi, L. Y. C. Agodoa, T. Sato et al., “Glomerular lesions in nonobese diabetic mouse: before and after the onset of hyperglycemia,” Laboratory Investigation, vol. 63, no. 2, pp. 204–212, 1990.
[33]
C. E. Alpers and K. L. Hudkins, “Mouse models of diabetic nephropathy,” Current Opinion in Nephrology and Hypertension, vol. 20, no. 3, pp. 278–284, 2011.
[34]
M. P. Cohen, G. T. Lautenslager, and C. W. Shearman, “Increased urinary type IV collagen marks the development of glomerular pathology in diabetic d/db mice,” Metabolism, vol. 50, no. 12, pp. 1435–1440, 2001.
[35]
K. Arakawa, T. Ishihara, A. Oku et al., “Improved diabetic syndrome in C57BL/KsJ-db/db mice by oral administration of the Na+-glucose cotransporter inhibitor T-1095,” British Journal of Pharmacology, vol. 132, no. 2, pp. 578–586, 2001.
[36]
R. Mishra, S. N. Emancipator, C. Miller, T. Kern, and M. S. Simonson, “Adipose differentiation-related protein and regulators of lipid homeostasis identified by gene expression profiling in the murine db/db diabetic kidney,” American Journal of Physiology, vol. 286, no. 5, pp. F913–F921, 2004.
[37]
D. Koya, M. Haneda, H. Nakagawa et al., “Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC β inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes,” FASEB Journal, vol. 14, no. 3, pp. 439–447, 2000.
[38]
D. H. Moralejo, T. Ogino, M. Zhu et al., “A major quantitative trait locus co-localizing with cholecystokinin type A receptor gene influences poor pancreatic proliferation in a spontaneously diabetogenic rat,” Mammalian Genome, vol. 9, no. 10, pp. 794–798, 1998.
[39]
R. Choi, B. H. Kim, J. Naowaboot et al., “Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 diabetes,” Experimental and Molecular Medicine, vol. 43, no. 12, pp. 676–683, 2011.
[40]
P. Li, H. Zhang, F. J. Burczynski et al., “Attenuation of diabetic nephropathy in Otsuka long-evans Tokushima fatty (OLETF) rats with a combination of Chinese herbs (tangshen formula),” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 613737, 8 pages, 2011.
[41]
A. O. Phillips, K. Baboolal, S. Riley et al., “Association of prolonged hyperglycemia with glomerular hypertrophy and renal basement membrane thickening in the Goto Kakizaki model of non-insulin-dependent diabetes mellitus,” American Journal of Kidney Diseases, vol. 37, no. 2, pp. 400–410, 2001.
[42]
S. G. Riley, R. A. Evans, M. Davies, J. Floege, and A. O. Phillips, “Goto-Kakizaki rat is protected from proteinuria after induction of anti-Thy1 nephritis,” American Journal of Kidney Diseases, vol. 39, no. 5, pp. 985–1000, 2002.
[43]
S. G. Riley, R. Steadman, J. D. Williams, J. Floege, and A. O. Phillips, “Augmentation of kidney injury by basic fibroblast growth factor or platelet-derived growth factor does not induce progressive diabetic nephropathy in the Goto Kakizaki model of non-insulin-dependent diabetes,” Journal of Laboratory and Clinical Medicine, vol. 134, no. 3, pp. 304–312, 1999.
[44]
N. Sato, K. Komatsu, and H. Kurumatani, “Late onset of diabetic nephropathy in spontaneously diabetic GK rats,” American Journal of Nephrology, vol. 23, no. 5, pp. 334–342, 2003.
[45]
Y. Yamamoto, I. Kato, T. Doi et al., “Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice,” Journal of Clinical Investigation, vol. 108, no. 2, pp. 261–268, 2001.
[46]
S. C. Chua Jr., W. K. Chung, X. S. Wu-Peng et al., “Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor,” Science, vol. 271, no. 5251, pp. 994–996, 1996.
[47]
S. M. Clee, S. T. Nadler, and A. D. Attie, “Genetic and genomic studies of the BTBR ob/ob mouse model of type 2 diabetes,” American Journal of Therapeutics, vol. 12, no. 6, pp. 491–498, 2005.
[48]
K. L. Hudkins, W. Pichaiwong, T. Wietecha et al., “BTBR Ob/Ob mutant mice model progressive diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 21, no. 9, pp. 1533–1542, 2010.
[49]
K. A. Melez, L. C. Harrison, J. N. Gilliam, and A. D. Steinberg, “Diabetes is associated with autoimmunity in the New Zealand Obese (NZO) mouse,” Diabetes, vol. 29, no. 10, pp. 835–840, 1980.
[50]
D. Lu, D. Willard, I. R. Patel et al., “Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor,” Nature, vol. 371, no. 6500, pp. 799–802, 1994.
[51]
M. M. Ollmann, B. D. Wilson, Y. Yang et al., “Antagonism of Central Melanocortin receptors in vitro and in vivo by agouti-related protein,” Science, vol. 278, no. 5335, pp. 135–138, 1997.
[52]
M. Okazaki, Y. Saito, Y. Udaka et al., “Diabetic nephropathy in KK and KK-Ay mice,” Experimental Animals, vol. 51, no. 2, pp. 191–196, 2002.
[53]
H. Ninomiya, T. Inomata, and K. Ogihara, “Obstructive uropathy and hydronephrosis in male KK-Ay mice: a report of cases,” Journal of Veterinary Medical Science, vol. 61, no. 1, pp. 53–57, 1999.
[54]
M. S. Phillips, Q. Liu, H. A. Hammond et al., “Leptin receptor missense mutation in the fatty Zucker rat,” Nature Genetics, vol. 13, no. 1, pp. 18–19, 1996.
[55]
Y. Li, Y. Qi, M. S. Kim et al., “Increased renal collagen cross-linking and lipid accumulation in nephropathy of Zucker diabetic fatty rats,” Diabetes/Metabolism Research and Reviews, vol. 24, no. 6, pp. 498–506, 2008.
[56]
S. Hoshi, Y. Shu, F. Yoshida et al., “Podocyte injury promotes progressive nephropathy in zucker diabetic fatty rats,” Laboratory Investigation, vol. 82, no. 1, pp. 25–35, 2002.
[57]
T. M. Coimbra, U. Janssen, H. J. Gr?ne et al., “Early events leading to renal injury in obese Zucker (fatty) rats with type II diabetes,” Kidney International, vol. 57, no. 1, pp. 167–182, 2000.
[58]
Y. Izuhara, T. Sada, H. Yanagisawa et al., “A novel sartan derivative with very low angiotensin II type 1 receptor affinity protects the kidney in type 2 diabetic rats,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 10, pp. 1767–1773, 2008.
[59]
A. B. Magil and J. J. Frohlich, “Monocytes and macrophages in focal glomerulosclerosis in Zucker rats,” Nephron, vol. 59, no. 1, pp. 131–138, 1991.
[60]
A. B. Magil, “Tubulointerstitial lesions in young zucker rats,” American Journal of Kidney Diseases, vol. 25, no. 3, pp. 478–485, 1995.
[61]
D. Chen and M. Wang, “Development and application of rodent models for type 2 diabetes,” Diabetes, Obesity and Metabolism, vol. 7, no. 4, pp. 307–317, 2005.
[62]
J. L. Figarola, S. Loera, Y. Weng, N. Shanmugam, R. Natarajan, and S. Rahbar, “LR-90 prevents dyslipidaemia and diabetic nephropathy in the Zucker diabetic fatty rat,” Diabetologia, vol. 51, no. 5, pp. 882–891, 2008.
[63]
W. P. Cui, B. Li, Y. Bai, et al., “Potential role for Nrf2 activation in the therapeutic effect of MG132 on diabetic nephropathy in OVE26 diabetic mice,” American Journal of Physiology, vol. 304, no. 1, pp. E87–E99, 2013.
[64]
S. Zheng, W. T. Noonan, N. S. Metreveli et al., “Development of late-stage diabetic nephropathy in OVE26 diabetic mice,” Diabetes, vol. 53, no. 12, pp. 3248–3257, 2004.
[65]
J. Xu, Y. Huang, F. Li, S. Zheng, and P. N. Epstein, “FVB mouse genotype confers susceptibility to OVE26 diabetic albuminuria,” American Journal of Physiology, vol. 299, no. 3, pp. 487–494, 2010.
[66]
H. J. Zhao, S. Wang, H. Cheng et al., “Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice,” Journal of the American Society of Nephrology, vol. 17, no. 10, pp. 2664–2669, 2006.
[67]
S. Mohan, R. L. Reddick, N. Musi et al., “Diabetic eNOS knockout mice develop distinct macro- and microvascular complications,” Laboratory Investigation, vol. 88, no. 5, pp. 515–528, 2008.
[68]
F. C. Brosius III, C. E. Alpers, E. P. Bottinger et al., “Mouse models of diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 20, no. 12, pp. 2503–2512, 2009.
[69]
R. Inagi, Y. Yamamoto, M. Nangaku et al., “A severe diabetic nephropathy model with early development of nodule-like lesions induced by megsin overexpression in RAGE/iNOS transgenic mice,” Diabetes, vol. 55, no. 2, pp. 356–366, 2006.
[70]
M. Maeda, A. Yabuki, S. Suzuki, M. Matsumoto, K. Taniguchi, and H. Nishinakagawa, “Renal lesions in spontaneous insulin-dependent diabetes mellitus in the nonobese diabetic mouse: acute phase of diabetes,” Veterinary Pathology, vol. 40, no. 2, pp. 187–195, 2003.
[71]
C.-J. He, F. Zheng, A. Stitt, L. Striker, M. Hattori, and H. Vlassara, “Differential expression of renal AGE-receptor genes in NOD mice: possible role in nonobese diabetic renal disease,” Kidney International, vol. 58, no. 5, pp. 1931–1940, 2000.
[72]
O. G. Pankewycz, J. Guan, W. K. Bolton, A. Gomez, and J. F. Benedict, “Renal TGF-β regulation in spontaneously diabetic NOD mice with correlations in mesangial cells,” Kidney International, vol. 46, no. 3, pp. 748–758, 1994.
[73]
K. Sharma and F. N. Ziyadeh, “Renal hypertrophy is associated with upregulation of TGF-β1 gene expression in diabetic BB rat and NOD mouse,” American Journal of Physiology, vol. 267, no. 6, part 2, pp. F1094–F1101, 1994.
[74]
F. Y. Chow, D. J. Nikolic-Paterson, E. Ozols, R. C. Atkins, and G. H. Tesch, “Intercellular adhesion molecule-1 deficiency is protective against nephropathy in type 2 diabetic db/db mice,” Journal of the American Society of Nephrology, vol. 16, no. 6, pp. 1711–1722, 2005.
[75]
F. R. DeRubertis, P. A. Craven, M. F. Melhem, and E. M. Salah, “Attenuation of renal injury in db/db mice overexpressing superoxide dismutase: evidence for reduced superoxide-nitric oxide interaction,” Diabetes, vol. 53, no. 3, pp. 762–768, 2004.
[76]
K. Shima, K. Shi, T. Sano, T. Iwami, A. Mizuno, and Y. Noma, “Is exercise training effective in preventing diabetes mellitus in the Otsuka-Long-Evans-Tokushima Fatty rat, a model of spontaneous non-insulin-dependent diabetes mellitus?” Metabolism, vol. 42, no. 8, pp. 971–977, 1993.
[77]
N. Okauchi, A. Mizuno, S. Yoshimoto, M. Zhu, T. Sano, and K. Shima, “Is caloric restriction effective in preventing diabetes mellitus in the Otsuka Long Evans Tokushima Fatty Rat, a model of spontaneous non-insulin-dependent diabetes mellitus?” Diabetes Research and Clinical Practice, vol. 27, no. 2, pp. 97–106, 1995.
[78]
U. Janssen, A. Vassiliadou, S. G. Riley, A. O. Phillips, and J. Floege, “The quest for a model of type II diabetes with nephropathy: the Goto Kakizaki rat,” Journal of Nephrology, vol. 17, no. 6, pp. 769–773, 2004.
[79]
F. Miralles and B. Portha, “Early development of beta-cells is impaired in the GK rat model of type 2 diabetes,” Diabetes, vol. 50, pp. S84–88, 2001.
[80]
M. T. Velasquez, P. L. Kimmel, and O. E. Michaelis IV, “Animal models of spontaneous diabetic kidney disease,” FASEB Journal, vol. 4, no. 11, pp. 2850–2859, 1990.
[81]
F. Bielschowsky and M. Bielschowsky, “The New Zealand strain of obese mice; their response to stilboestrol and to insulin,” Australian Journal of Experimental Biology & Medical Science, vol. 34, no. 3, pp. 181–198, 1956.
[82]
E. H. Leiter and P. C. Reifsnyder, “Differential levels of diabetogenic stress in two new mouse models of obesity and type 2 diabetes,” Diabetes, vol. 53, no. 1, pp. S4–S11, 2004.
[83]
P. C. Reifsnyder and E. H. Leiter, “Deconstructing and reconstructing obesity-induced diabetes (diabesity) in mice,” Diabetes, vol. 51, no. 3, pp. 825–832, 2002.
[84]
J. P. Corsetti, J. D. Sparks, R. G. Peterson, R. L. Smith, and C. E. Sparks, “Effect of dietary fat on the development of non-insulin dependent diabetes mellitus in obese Zucker diabetic fatty male and female rats,” Atherosclerosis, vol. 148, no. 2, pp. 231–241, 2000.