Adrenomedullin has an antioxidative action and protects organs in various diseases. To clarify the role of adrenomedullin in diabetic nephropathy, we investigated the NADPH oxidase expression, renin-secreting granular cell (GC) hyperplasia, and glomerular matrix expansion in the streptozotocin (STZ)-induced diabetic adrenomedullin gene knockout (AMKO) mice compared with the STZ-diabetic wild mice at 10 weeks. The NADPH oxidase p47phox expression and lipid peroxidation products were enhanced in the glomeruli of the diabetic mice compared with that observed in the controls in both wild and AMKO mice. These changes were more obvious in the AMKO mice than in the wild mice. Glomerular mesangial matrix expansion was more severe in the diabetic AMKO mice than in the diabetic wild mice and exhibited a positive correlation with the degree of lipid peroxidation products in the glomeruli. Proteinuria was significantly higher in the diabetic AMKO mice than in the diabetic wild mice. The GC hyperplasia score and the renal prorenin expression were significantly increased in the diabetic AMKO mice than in the diabetic wild mice, and a positive correlation was observed with the NADPH oxidase expression in the macula densa. The endogenous adrenomedullin gene exhibits an antioxidant action via the inhibition of NADPH oxidase probably by suppressing the local renin-angiotensin system. 1. Introduction Adrenomedullin is a potent vasodilating peptide that is upregulated in cardiovascular diseases to counteract the disease process with its diverse physiological actions including antioxidative stress actions [1–6]. The plasma concentration of adrenomedullin also increased in the diabetic patients, and hyperglycemia increases the production of adrenomedullin in the vasculature [7, 8]. The receptors for adrenomedullin are expressed in the kidneys, especially in the glomerulus and distal nephron, and the local action of adrenomedullin is increased in diabetic rats [9], thus suggesting that adrenomedullin may contribute to the dilatation of the glomerular capillary in the early phase of diabetic nephropathy. Although the organoprotective effects of adrenomedullin have been demonstrated in various cardiovascular diseases, the mechanisms underlying its renoprotection in diabetic nephropathy are still unclear. Hyperglycemia accelerates the formation of advanced glycation end products (AGE), while also upregulating the protein kinase C (PKC) activity, accelerating the polyol pathway, and promoting sorbitol deposition [10]. These pathways are related to the increased oxidative stress,
References
[1]
T. Saito, H. Itoh, T.-H. Chun et al., “Coordinate regulation of endothelin and adrenomedullin secretion by oxidative stress in endothelial cells,” American Journal of Physiology, vol. 281, no. 3, pp. H1364–H1371, 2001.
[2]
T. Nishikimi, Y. Mori, N. Kobayashi et al., “Renoprotective effect of chronic adrenomedullin infusion in Dahl salt-sensitive rats,” Hypertension, vol. 39, no. 6, pp. 1077–1082, 2002.
[3]
H. Nishimatsu, Y. Hirata, T. Shindo et al., “Role of endogenous adrenomedullin in the regulation of vascular tone and ischemic renal injury: studies on transgenic/knockout mice of adrenomedullin gene,” Circulation Research, vol. 90, no. 6, pp. 657–663, 2002.
[4]
T. Shimosawa, Y. Shibagaki, K. Ishibashi et al., “Adrenomedullin, an endogenous peptide, counteracts cardiovascular damage,” Circulation, vol. 105, no. 1, pp. 106–111, 2002.
[5]
T. Tsuruda and J. C. Burnett Jr., “Adrenomedullin: an autocrine/paracrine factor for cardiorenal protection,” Circulation Research, vol. 90, no. 6, pp. 625–627, 2002.
[6]
J. Kawai, K. Ando, A. Tojo et al., “Endogenous adrenomedullin protects against vascular response to injury in mice,” Circulation, vol. 109, no. 9, pp. 1147–1153, 2004.
[7]
M. Hayashi, T. Shimosawa, M.-A. Isaka, S. Yamada, R. Fujita, and T. Fujita, “Plasma adrenomedullin in diabetes,” The Lancet, vol. 350, no. 9089, pp. 1449–1450, 1997.
[8]
M. Hayashi, T. Shimosawa, and T. Fujita, “Hyperglycemia increases vascular adrenomedullin expression,” Biochemical and Biophysical Research Communications, vol. 258, no. 2, pp. 453–456, 1999.
[9]
K. Hiragushi, J. Wada, J. Eguchi et al., “The role of adrenomedullin and receptors in glomerular hyperfiltration in streptozotocin-induced diabetic rats,” Kidney International, vol. 65, no. 2, pp. 540–550, 2004.
[10]
M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, 2001.
[11]
C. G. Schnackenberg and C. S. Wilcox, “The SOD mimetic tempol restores vasodilation in afferent arterioles of experimental diabetes,” Kidney International, vol. 59, no. 5, pp. 1859–1864, 2001.
[12]
T. Nassar, B. Kadery, C. Lotan, N. Da'as, Y. Kleinman, and A. Haj-Yehia, “Effects of the superoxide dismutase-mimetic compound tempol on endothelial dysfunction in streptozotocin-induced diabetic rats,” European Journal of Pharmacology, vol. 436, no. 1-2, pp. 111–118, 2002.
[13]
M. L. Onozato, A. Tojo, A. Goto, T. Fujita, and C. S. Wilcox, “Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB,” Kidney International, vol. 61, no. 1, pp. 186–194, 2002.
[14]
M. W. Brands, T. D. Bell, and B. Gibson, “Nitric oxide may prevent hypertension early in diabetes by counteracting renal actions of superoxide,” Hypertension, vol. 43, no. 1, pp. 57–63, 2004.
[15]
M. L. Onozato, A. Tojo, A. Goto, and T. Fujita, “Radical scavenging effect of gliclazide in diabetic rats fed with a high cholesterol diet,” Kidney International, vol. 65, no. 3, pp. 951–960, 2004.
[16]
K. Asaba, A. Tojo, M. L. Onozato et al., “Effects of NADPH oxidase inhibitor in diabetic nephropathy,” Kidney International, vol. 67, no. 5, pp. 1890–1898, 2005.
[17]
A. Tojo, M. L. Onozato, N. Kobayashi, A. Goto, H. Matsuoka, and T. Fujita, “Angiotensin II and oxidative stress in Dahl salt-sensitive rat with heart failure,” Hypertension, vol. 40, no. 6, pp. 834–839, 2002.
[18]
A. Tojo, M. L. Onozato, S. Fukuda, K. Asaba, K. Kimura, and T. Fujita, “Nitric oxide generated by nNOS in the macula densa regulates the afferent arteriolar diameter in rat kidney,” Medical Electron Microscopy, vol. 37, no. 4, pp. 236–241, 2004.
[19]
A. Tojo, K. Kimura, S. Nanba, H. Matsuoka, and T. Sugimoto, “Variations in renal arteriolar diameter in deoxycorticosterone acetate-salt hypertensive rats. A microvascular cast study,” Virchows Archiv A, vol. 417, no. 5, pp. 389–393, 1990.
[20]
M. L. Onozato, A. Tojo, J. Leiper, T. Fujita, F. Palm, and C. S. Wilcox, “Expression of NG,NG-dimethylarginine dimethylaminohydrolase and protein arginine N-methyltransferase isoforms in diabetic rat kidney effects of angiotensin II receptor blockers,” Diabetes, vol. 57, no. 1, pp. 172–180, 2008.
[21]
T. Ishimitsu, K. Tsukada, J. Minami et al., “Microsatellite DNA polymorphism of human adrenomedullin gene in type 2 diabetic patients with renal failure,” Kidney International, vol. 63, no. 6, pp. 2230–2235, 2003.
[22]
T.-H. Chun, H. Itoh, T. Saito et al., “Oxidative stress augments secretion of endothelium-derived relaxing peptides, C-type natriuretic peptide and adrenomedullin,” Journal of Hypertension, vol. 18, no. 5, pp. 575–580, 2000.
[23]
F. Yoshihara, T. Horio, T. Nishikimi, H. Matsuo, and K. Kangawa, “Possible involvement of oxidative stress in hypoxia-induced adrenomedullin secretion in cultured rat cardiomyocytes,” European Journal of Pharmacology, vol. 436, no. 1-2, pp. 1–6, 2002.
[24]
A. Katsuki, Y. Sumida, H. Urakawa et al., “Increased oxidative stress is associated with elevated plasma levels of adrenomedullin in hypertensive patients with type 2 diabetes,” Diabetes Care, vol. 26, no. 5, pp. 1642–1643, 2003.
[25]
M. Kitada, D. Koya, T. Sugimoto et al., “Translocation of glomerular p47phox and p67phox by protein kinase C-β activation is required for oxidative stress in diabetic nephropathy,” Diabetes, vol. 52, no. 10, pp. 2603–2614, 2003.
[26]
K. K. Griendling, C. A. Minieri, J. D. Ollerenshaw, and R. W. Alexander, “Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells,” Circulation Research, vol. 74, no. 6, pp. 1141–1148, 1994.
[27]
P. N. Seshiah, D. S. Weber, P. Rocic, L. Valppu, Y. Taniyama, and K. K. Griendling, “Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators,” Circulation Research, vol. 91, no. 5, pp. 406–413, 2002.
[28]
C. Gulmann, S. Rudberg, G. Nyberg, and R. ?sterby, “Enlargement of the juxtaglomerular apparatus in insulin-dependent diabetes mellitus patients with microalbuminuria,” Virchows Archiv, vol. 433, no. 1, pp. 63–67, 1998.
[29]
C. Gulmann, R. ?sterby, H.-J. Bangstad, and S. Rudberg, “The juxtaglomerular apparatus in young type-1 diabetic patients with microalbuminuria: effect of antihypertensive treatment,” Virchows Archiv, vol. 438, no. 6, pp. 618–623, 2001.
[30]
E. Ritz and R. Dikow, “Angiontensin receptor antagonists in patients with nephropathy due to type 2 diabetes,” Annals of Medicine, vol. 34, no. 7-8, pp. 507–513, 2002.
[31]
R. E. Gilbert, H. Krum, J. Wilkinson-Berka, and D. J. Kelly, “The renin-angiotensin system and the long-term complications of diabetes: pathophysiological and therapeutic considerations,” Diabetic Medicine, vol. 20, no. 8, pp. 607–621, 2003.
[32]
S. Mezzano, A. Droguett, M. E. Burgos et al., “Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy,” Kidney International, Supplement, vol. 64, no. 86, pp. S64–S70, 2003.
[33]
R. Moriya, J. C. Manivel, and M. Mauer, “Juxtaglomerular apparatus T-cell infiltration affects glomerular structure in type 1 diabetic patients,” Diabetologia, vol. 47, no. 1, pp. 82–88, 2004.
[34]
C. J. Charles, J. G. Lainchbury, M. G. Nicholls, M. T. Rademaker, A. M. Richards, and R. W. Troughton, “Adrenomedullin and the renin-angiotensin-aldosterone system,” Regulatory Peptides, vol. 112, no. 1–3, pp. 41–49, 2003.
[35]
B. L. Jensen, B. K. Kr?mer, and A. Kurtz, “Adrenomedullin stimulates renin release and renin mRNA in mouse juxtaglomerular granular cells,” Hypertension, vol. 29, no. 5, pp. 1148–1155, 1997.