Diabetic or peripheral diabetic neuropathy (PDN) is one of the major complications among some other diabetic complications such as diabetic nephropathy, diabetic retinopathy, and diabetic cardiomyopathy. The use of animal models in the research of diabetes and diabetic complications is very common when rats and mice are most commonly used for many reasons. A numbers of animal models of diabetic and PDN have been developed in the last several decades such as streptozotocin-induced diabetic rat models, conventional or genetically modified or high-fat diet-fed C57BL/Ks (db/db) mice models, streptozotocin-induced C57BL6/J and ddY mice models, Chinese hamster neuropathic model, rhesus monkey PDN model, spontaneously diabetic WBN/Kob rat model, L-fucose-induced neropathic rat model, partial sciatic nerve ligated rat model, nonobese diabetic (NOD) mice model, spontaneously induced Ins2 Akita mice model, leptin-deficient (ob/ob) mice model, Otsuka Long-Evans Tokushima Fatty (OLETF) rat model, surgically-induced neuropathic model, and genetically modified Spontaneously Diabetic Torii (SDT) rat model, none of which are without limitations. An animal model of diabetic or PDN should mimic the all major pathogeneses of human diabetic neuropathy. Hence, this review comparatively evaluates the animal models of diabetic and PDN which are developed since 1960s with their advantages and disadvantages to help diabetic research groups in order to more accurately choose an appropriate model to meet their specific research objectives. 1. Introduction The term “diabetes” was first coined by Araetus of Cappodocia (81-133AD). Later, the word “mellitus” (honey sweet) was added by Thomas Willis (Britain) in 1675 after rediscovering the sweetness of urine and blood of patients (first noticed by the ancient Indians) [1]. In 1776, Dobson (Britain) for the first time confirmed the presence of excess sugar in urine and blood as a cause of their sweetness. Depending on the pathogenesis, diabetes is classified as type 1 and type 2. The first widely accepted classification of diabetes mellitus was published by World Health Organization (WHO) in 1980 [2] and, in modified form, in 1985 [3]. In 1980, the WHO Expert Committee proposed two major classes of diabetes mellitus, namely: Insulin Dependent Diabetes Mellitus (IDDM) or Type 1 and Noninsulin Dependent Diabetes Mellitus (NIDDM) or Type 2 diabetes (T2D). In 1985, the WHO expert committee omitted the terms Type 1 and Type 2, but the terms IDDM and NIDDM were retained, and a class of Malnutrition-Related Diabetes Mellitus (MRDM) was
References
[1]
A. M. Ahmed, “History of diabetes mellitus,” Saudi Medical Journal, vol. 23, no. 4, pp. 373–378, 2002.
[2]
WHO Expert Committee on Diabetes Mellitus. Second Report, vol. 646 of WHO Technical Report Series, Geneva, Switzerland, 1980.
[3]
World Health Organization (WHO), DiAbetes Mellitus: Report of a WHO Study Group, vol. 727 of WHO Technical Report Series, Geneva, Switzerland, 1985.
[4]
Y. Harati, “Diabetic neuropathies: unanswered questions,” Neurologic Clinics, vol. 25, no. 1, pp. 303–317, 2007.
[5]
A. J. M. Boulton, “The diabetic foot: from art to science. The 18th Camillo Golgi lecture,” Diabetologia, vol. 47, no. 8, pp. 1343–1353, 2004.
[6]
V. R. Drel, N. Mashtalir, O. Ilnytska et al., “The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity,” Diabetes, vol. 55, no. 12, pp. 3335–3343, 2006.
[7]
N. A. Calcutt, “Potential mechanisms of neuropathic pain in diabetes,” International Review of Neurobiology, vol. 50, pp. 205–228, 2002.
[8]
K. A. Sullivan, S. I. Lentz, J. L. Roberts Jr., and E. L. Feldman, “Criteria for creating and assessing mouse models of diabetic neuropathy,” Current Drug Targets, vol. 9, no. 1, pp. 3–13, 2008.
[9]
A. S. Shaikh and R. S. Somani, “Animal models and biomarkers of neuropathy in diabetic rodents,” Indian Journal of Pharmacology, vol. 42, no. 3, pp. 129–134, 2010.
[10]
A. H?ke, “Animal models of peripheral neuropathies,” Neurotherapeutics, vol. 9, no. 2, pp. 262–269, 2012.
[11]
S. G. Eliasson, “Nerve conduction changes in experimental diabetes,” The Journal of Clinical Investigation, vol. 43, pp. 2353–2358, 1964.
[12]
S. G. Eliasson, “Regenerative processes in experimental diabetic neuropathy,” Transactions of the American Neurological Association, vol. 90, pp. 35–37, 1965.
[13]
G. M. Preston, “Peripheral neuropathy in the alloxan-diabetic rat,” Journal of Physiology, vol. 189, no. 2, 1967.
[14]
R. E. Lovelace, “Experimental neuropathy in rats made diabetic with alloxan,” Electroencephalography and Clinical Neurophysiology, vol. 25, no. 4, p. 399, 1968.
[15]
J. Jakobsen and K. Lundbeck, “Neuropathy in experimental diabetes: an animal model,” British Medical Journal, vol. 2, no. 6030, pp. 278–279, 1976.
[16]
A. A. F. Sima and D. M. Robertson, “Peripheral neuropathy in mutant diabetic mouse [C57BL/Ks(db/db)],” Acta Neuropathologica, vol. 41, no. 2, pp. 85–89, 1978.
[17]
A. A. F. Sima and D. M. Robertson, “Peripheral neuropathy in the diabetic mutant mouse. An ultrastructural study,” Laboratory Investigation, vol. 40, no. 6, pp. 627–632, 1979.
[18]
D. M. Robertson and A. A. F. Sima, “Diabetic neuropathy in the mutant mouse [C57BL/ks(db/db)]. A morphometric study,” Diabetes, vol. 29, no. 1, pp. 60–67, 1980.
[19]
W. R. Kennedy, D. C. Quick, T. Miyoshi, and G. C. Gerritsen, “Peripheral neurology of the diabetic Chinese hamster,” Diabetologia, vol. 23, no. 5, pp. 445–451, 1982.
[20]
D. R. Cornblath, M. A. Hillman, J. S. Striffler, C. N. Herman, and B. C. Hansen, “Peripheral neuropathy in diabetic monkeys,” Diabetes, vol. 38, no. 11, pp. 1365–1370, 1989.
[21]
A. A. F. Sima, W.-X. Zhang, and D. A. Greene, “Diabetic and hypoglycemic neuropathy—a comparison in the BB rat,” Diabetes Research and Clinical Practice, vol. 6, no. 4, pp. 279–296, 1989.
[22]
O. A. R. Filho and V. P. S. Fazan, “Streptozotocin induced diabetes as a model of phrenic nerve neuropathy in rats,” Journal of Neuroscience Methods, vol. 151, no. 2, pp. 131–138, 2006.
[23]
L. M. Hinder, A. M. Vincent, J. M. Hayes, L. L. McLean, and E. L. Feldman, “Apolipoprotein E knockout as the basis of mouse models of dyslipidemia-induced neuropathy,” Experimental Neurology, vol. 293, pp. 102–110, 2013.
[24]
I. Vareniuk, I. A. Pavlov, and I. G. Obrosova, “Inducible nitric oxide synthase gene deficiency counteracts multiple manifestations of peripheral neuropathy in a streptozotocin-induced mouse model of diabetes,” Diabetologia, vol. 51, no. 11, pp. 2126–2133, 2008.
[25]
T. Murakami, T. Iwanaga, Y. Ogawa et al., “Development of sensory neuropathy in streptozotocin-induced diabetic mice,” Brain and Behavior, vol. 3, no. 1, pp. 35–41, 2013.
[26]
S. Yagihashi, R.-I. Wada, M. Kamijo, and K. Nagai, “Peripheral neuropathy in the WBN/Kob rat with chronic pancreatitis and spontaneous diabetes,” Laboratory Investigation, vol. 68, no. 3, pp. 296–307, 1993.
[27]
A. A. F. Sima, J. A. Dunlap, E. P. Davidson et al., “Supplemental myo-inositol prevents L-fucose-induced diabetic neuropathy,” Diabetes, vol. 46, no. 2, pp. 301–306, 1997.
[28]
A. Fox, C. Eastwood, C. Gentry, D. Manning, and L. Urban, “Critical evaluation of the streptozotocin model of painful diabetic neuropathy in the rat,” Pain, vol. 81, no. 3, pp. 307–316, 1999.
[29]
R. E. Schmidt, D. A. Dorsey, L. N. Beaudet et al., “Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy: a new experimental model of diabetic autonomic neuropathy,” American Journal of Pathology, vol. 163, no. 5, pp. 2077–2091, 2003.
[30]
J. Homs, L. Ariza, G. Pagès et al., “Comparative study of peripheral neuropathy and nerve regeneration in NOD and ICR diabetic mice,” Journal of the Peripheral Nervous System, vol. 16, no. 3, pp. 213–227, 2011.
[31]
C. Choeiri, K. Hewitt, J. Durkin, C. J. Simard, J.-M. Renaud, and C. Messier, “Longitudinal evaluation of memory performance and peripheral neuropathy in the Ins2C96Y Akita mice,” Behavioural Brain Research, vol. 157, no. 1, pp. 31–38, 2005.
[32]
R. E. Schmidt, K. G. Green, L. L. Snipes, and D. Feng, “Neuritic dystrophy and neuronopathy in Akita (Ins2Akita) diabetic mouse sympathetic ganglia,” Experimental Neurology, vol. 216, no. 1, pp. 207–218, 2009.
[33]
Z. Kamenov, H. Higashino, M. Todorova, N. Kajimoto, and A. Suzuki, “Physiological characteristics of diabetic neuropathy in sucrose-fed Otsuka Long-Evans Tokushima fatty rats,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 28, no. 1, pp. 13–18, 2006.
[34]
A. Serafín, J. Molín, M. Márquez et al., “Diabetic neuropathy: electrophysiologicaland morphological study of peripheral nerve degenerationand regeneration in transgenic mice that express IFNβ in β cells,” Muscle and Nerve, vol. 41, no. 5, pp. 630–641, 2010.
[35]
I. G. Obrosova, O. Ilnytska, V. V. Lyzogubov et al., “High-fat diet-induced neuropathy of pre-diabetes and obesity: effects of “healthy” diet and aldose reductase inhibition,” Diabetes, vol. 56, no. 10, pp. 2598–2608, 2007.
[36]
A. Muthuraman, M. Ramesh, and S. Sood, “Development of animal model for vasculatic neuropathy: induction by ischemic-reperfusion in the rat femoral artery,” Journal of Neuroscience Methods, vol. 186, no. 2, pp. 215–221, 2010.
[37]
T. Yamaguchi, T. Sasase, Y. Mera, et al., “Diabetic peripheral neuropathy in spontaneously diabetic tori-Lepr (fa) (SDT Faty) rats,” Journal of Veterinary Medical Science, vol. 74, no. 12, pp. 1669–1673, 2012.
[38]
K. Ozaki, K. Miura, M. Tsuchitani, and I. Narama, “Peripheral neuropathy in the spontaneously diabetic WBN/Kob rat,” Acta Neuropathologica, vol. 92, no. 6, pp. 603–607, 1996.
[39]
P. J. Dyck, P. J. B. Dyck, J. A. Velosa, T. S. Larson, and P. C. O'Brien, “Patterns of quantitative sensation testing of hypoesthesia and hyperalgesia are predictive of diabetic polyneuropathy: a study of three cohorts,” Diabetes Care, vol. 23, no. 4, pp. 510–517, 2000.
[40]
B. N. Hong and T. H. Kang, “Auditory neuropathy in streptozotocin-induced diabetic mouse,” Neuroscience Letters, vol. 431, no. 3, pp. 268–272, 2008.