Aim. To explore the factors associated with exercise-induced acute capillary glucose (CapBG) changes in individuals with type 2 diabetes (T2D). Methods. Fifteen individuals with T2D were randomly assigned to energy-matched high intensity interval exercise (HI-IE) and moderate intensity continuous exercise (MI-CE) interventions and performed a designated exercise protocol 5 days per week for 12 weeks. The duration of exercise progressed from 30 to 60 minutes. CapBG was measured immediately before and after each exercise session. Timing of food and antihyperglycemic medication intake prior to exercise was recorded. Results. Overall, the mean CapBG was lowered by 1.9?mmol/L ( ) with the change ranging from ?8.9 to +2.7?mmol/L. Preexercise CapBG (44%; ), medication (5%; ), food intake (4%; ), exercise duration (5%; ), and exercise intensity (1%; ) were all associated with CapBG changes, explaining 59% of the variability. Conclusion. The greater reduction in CapBG seen in individuals with higher preexercise CapBG may suggest the importance of exercise in the population with elevated glycemia. Lower blood glucose can be achieved with moderate intensity exercise, but prolonging exercise duration and/or including brief bouts of intense exercise accentuate the reduction, which can further be magnified by performing exercise after meals and antihyperglycemic medication. This trial is registered with ClinicalTrial.gov NCT01144078. 1. Introduction One of the major goals of prescribing exercise for individuals with type 2 diabetes (T2D) is to reduce hyperglycemia, a risk factor for long-term complications. There have been several meta-analyses demonstrating that, on average, exercise has a clinically meaningful impact on glycemic control in individuals with T2D [1–3]. However, while the overall glucose-lowering effect of exercise is well recognized, large glycemic heterogeneity among studies and within individuals is often under appreciated. Indeed, there are divergent findings as to which characteristics best predict long-term improvements in glycemic control. One systematic review showed that exercise volume was the major determinant of glycemic changes in response to exercise training [4], while another showed exercise intensity is more closely associated [5]. The long-term glycemic benefit of exercise training is considered as the sum of the effects of each successive bout of exercise [6]. Accordingly, an enhanced understanding of the heterogeneous acute responses to exercise may elucidate the varied degree of training effects. To date, a number of studies have
References
[1]
D. Umpierre, P. A. B. Ribeiro, C. K. Kramer et al., “Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis,” Journal of the American Medical Association, vol. 305, no. 17, pp. 1790–1799, 2011.
[2]
N. J. Snowling and W. G. Hopkins, “Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis,” Diabetes Care, vol. 29, no. 11, pp. 2518–2527, 2006.
[3]
N. G. Boulé, E. Haddad, G. P. Kenny, G. A. Wells, and R. J. Sigal, “Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials,” Journal of the American Medical Association, vol. 286, no. 10, pp. 1218–1227, 2001.
[4]
D. Umpierre, P. A. Ribeiro, B. D. Schaan, and J. P. Ribeiro, “Volume of supervised exercise training impacts glycaemic control in patients with type 2 diabetes: a systematic review with meta-regression analysis,” Diabetologia, vol. 56, pp. 242–251, 2012.
[5]
N. G. Boulé, G. P. Kenny, E. Haddad, G. A. Wells, and R. J. Sigal, “Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in Type 2 diabetes mellitus,” Diabetologia, vol. 46, no. 8, pp. 1071–1081, 2003.
[6]
M. Duclos, M.-L. Virally, and S. Dejager, “Exercise in the management of type 2 diabetes mellitus: what are the benefits and how does it work?” Physician and Sportsmedicine, vol. 39, no. 2, pp. 98–106, 2011.
[7]
C. Jeng, W.-Y. Chang, S.-R. Chen, and I.-J. Tseng, “Effects of arm exercise on serum glucose response in type 2 DM patients,” The Journal of Nursing Research, vol. 10, no. 3, pp. 187–194, 2002.
[8]
C. Jeng, C.-T. Ku, and W.-H. Huang, “Establishment of a predictive model of serum glucose changes under different exercise intensities and durations among patients with type 2 diabetes mellitus,” The Journal of Nursing Research, vol. 11, no. 4, pp. 287–294, 2003.
[9]
W. C. Hiyane, M. V. de Sousa, S. Moreira, et al., “Blood glucose responses of Type-2 diabetics during and after exercise performed at intensities above and below anaerobic threshold,” Brazilian. Journal of Kineanthropometry and Human Performance, vol. 10, pp. 8–11, 2008.
[10]
M. Kjaer, C. B. Hollenbeck, B. Frey-Hewitt, H. Galbo, W. Haskell, and G. M. Reaven, “Glucoregulation and hormonal responses to maximal exercise in non-insulin-dependent diabetes,” Journal of Applied Physiology, vol. 68, no. 5, pp. 2067–2074, 1990.
[11]
J. Kang, D. E. Kelley, R. J. Robertson et al., “Substrate utilization and glucose turnover during exercise of varying intensities in individuals with NIDDM,” Medicine and Science in Sports and Exercise, vol. 31, no. 1, pp. 82–89, 1999.
[12]
J. J. S. Larsen, F. Dela, S. Madsbad, and H. Galbo, “The effect of intense exercise on postprandial glucose homeostasis in Type II diabetic patients,” Diabetologia, vol. 42, no. 11, pp. 1282–1292, 1999.
[13]
P. Poirier, A. Tremblay, C. Catellier, G. Tancrède, C. Garneau, and A. Nadeau, “Impact of time interval from the last meal on glucose response to exercise in subjects with type 2 diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 8, pp. 2860–2864, 2000.
[14]
N. G. Boulé, C. Robert, G. J. Bell et al., “Metformin and exercise in type 2 diabetes: examining treatment modality interactions,” Diabetes Care, vol. 34, no. 7, pp. 1469–1474, 2011.
[15]
T. Terada, A. Friesen, S. Chahal, J. Bell, L. McCargar, and N. Boulé, “Feasibility and preliminary efficacy of high intensity interval training in type 2 diabetes,” Diabetes Research and Clinical Practice, vol. 99, no. 2, pp. 120–129, 2013.
[16]
American College of Sports Medicine, ACSM's Guidelines for Graded Exercise Testing and Prescription, Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 8th edition, 2010.
[17]
G. A. Brunner, M. Ellmerer, G. Sendlhofer et al., “Validation of home blood glucose meters respect to clinical and analytical approaches,” Diabetes Care, vol. 21, no. 4, pp. 585–590, 1998.
[18]
J. J. S. Larsen, F. Dela, M. Kj?r, and H. Galbo, “The effect of moderate exercise on postprandial glucose homeostasis in NIDDM patients,” Diabetologia, vol. 40, no. 4, pp. 447–453, 1997.
[19]
S. J. Montain, M. K. Hopper, A. R. Coggan, and E. F. Coyle, “Exercise metabolism at different time intervals after a meal,” Journal of Applied Physiology, vol. 70, no. 2, pp. 882–888, 1991.
[20]
U.S. Food and Drug Administration, “Glucophage [metformin hydrochloride tablets] information,” 2008, http://www.fda.gov/Safety/MedWatch/SafetyInformation/Safety-RelatedDrugLabelingChanges/ucm123317.htm.
[21]
K. Karstoft, K. Winding, S. H. Knudsen, et al., “The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in Type 2 diabetic patients: a randomized, controlled trial,” Diabetes Care, vol. 36, pp. 228–236, 2013.
[22]
A. E. Tj?nna, S. J. Lee, ?. Rognmo et al., “Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study,” Circulation, vol. 118, no. 4, pp. 346–354, 2008.
[23]
T. Gaudet-Savard, A. Ferland, T. L. Broderick et al., “Safety and magnitude of changes in blood glucose levels following exercise performed in the fasted and the postprandial state in men with type 2 diabetes,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 14, no. 6, pp. 831–836, 2007.
[24]
A. Ceriello, M. Hanefeld, L. Leiter et al., “Postprandial glucose regulation and diabetic complications,” Archives of Internal Medicine, vol. 164, no. 19, pp. 2090–2095, 2004.
[25]
L. Monnier, E. Mas, C. Ginet et al., “Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes,” Journal of the American Medical Association, vol. 295, no. 14, pp. 1681–1687, 2006.
[26]
U. Gudat, S. Bungert, F. Kemmer, and L. Heinemann, “The blood glucose lowering effects of exercise and glibenclamide in patients with type 2 diabetes mellitus,” Diabetic Medicine, vol. 15, pp. 194–198, 1998.
[27]
J. J. Larsen, F. Dela, S. Madsbad, J. Vibe-Petersen, and H. Galbo, “Interaction of sulfonylureas and exercise on glucose homeostasis in type 2 diabetic patients,” Diabetes Care, vol. 22, no. 10, pp. 1647–1654, 1999.
[28]
M. Massi-Benedetti, M. Herz, and C. Pfeiffer, “The effects of acute exercise on metabolic control in type II diabetic patients treated with glimepiride or clibenclamide,” Hormone and Metabolic Research, vol. 28, no. 9, pp. 451–455, 1996.
[29]
C. G. Sharoff, T. A. Hagobian, S. K. Malin et al., “Combining short-term metformin treatment and one bout of exercise does not increase insulin action in insulin-resistant individuals,” American Journal of Physiology—Endocrinology and Metabolism, vol. 298, no. 4, pp. E815–E823, 2010.