全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Novel Role of Parathyroid Hormone-Related Protein in the Pathophysiology of the Diabetic Kidney: Evidence from Experimental and Human Diabetic Nephropathy

DOI: 10.1155/2013/162846

Full-Text   Cite this paper   Add to My Lib

Abstract:

Parathyroid hormone-related protein (PTHrP) and its receptor type 1 (PTH1R) are extensively expressed in the kidney, where they are able to modulate renal function. Renal PTHrP is known to be overexpressed in acute renal injury. Recently, we hypothesized that PTHrP involvement in the mechanisms of renal injury might not be limited to conditions with predominant damage of the renal tubulointerstitium and might be extended to glomerular diseases, such as diabetic nephropathy (DN). In experimental DN, the overexpression of both PTHrP and the PTH1R contributes to the development of renal hypertrophy as well as proteinuria. More recent data have shown, for the first time, that PTHrP is upregulated in the kidney from patients with DN. Collectively, animal and human studies have shown that PTHrP acts as an important mediator of diabetic renal cell hypertrophy by a mechanism which involves the modulation of cell cycle regulatory proteins and TGF-β1. Furthermore, angiotensin II (Ang II), a critical factor in the progression of renal injury, appears to be responsible for PTHrP upregulation in these conditions. These findings provide novel insights into the well-known protective effects of Ang II antagonists in renal diseases, paving the way for new therapeutic approaches. 1. Diabetic Nephropathy (DN) End-stage renal failure due to diabetes mellitus, especially type 2 diabetes, has been recently described as a medical catastrophe of worldwide dimensions [1]. Diabetic nephropathy (DN) is characterized by the development of proteinuria and subsequent glomerulosclerosis, conditions which are always preceded by renal cell hypertrophy [2]. Although the diabetic kidney is extremely variable, from near normal size to even small fibrotic kidney, renal enlargement due to cellular hypertrophy and hyperplasia is an early feature of the disease both in human and in experimental animal models, especially in the absence of insulin treatment. Hypertrophy of tubuloepithelial as well as glomerular cells, including both visceral epithelial (podocytes) and mesangial cells, is an early hallmark of diabetes renal involvement [3–5]. Over time, glomerular cell hypertrophy might become a maladaptive response leading to glomerulosclerosis. Although the mechanisms by which high glucose (HG) leads to renal cell hypertrophy are still not completely understood, they appear to involve cell entry into the cell cycle—associated with cyclin D1 kinase activation early in G1—and subsequent arrest at the G1/S interphase, implicating inhibition or insufficient activation of cyclin E kinase, to permit

References

[1]  E. Ritz, I. Rychlik, F. Locatelli, and S. Halimi, “End-stage renal failure in type 2 diabetes: a medical catastrophe of worldwide dimensions,” American Journal of Kidney Diseases, vol. 34, no. 5, pp. 795–808, 1999.
[2]  G. Wolf and F. N. Ziyadeh, “Molecular mechanisms of diabetic renal hypertrophy,” Kidney International, vol. 56, no. 2, pp. 393–405, 1999.
[3]  A. C. Powers, “Diabetes Mellitus,” in Harrison's principles of Internal Medicine, D. L. Kasper, E. Braunwald, A. S. Fauci, S. L. Hauser, D. L. Longo, and J. L. Jamerson, Eds., pp. 2152–2180, McGRaw-Hill, New York, NY, USA, 16th edition, 2005.
[4]  C. C. Tisher and T. H. Hostetter, “Diabetic nephropathy,” in Renal Pathology, C. C. Tisher and B. M. Brenner, Eds., vol. 2, p. 1387, JB Lippincott, Philadelphia, Pa, USA, 1994.
[5]  G. Wolf, “New insights into the pathophysiology of diabetic nephrophathy: from haemodynamics to molecular pathology,” European Journal of Clinical Investigation, vol. 34, no. 12, pp. 785–796, 2004.
[6]  H. C. Huang and P. A. Preisig, “G1 kinases and transforming growth factor-β signaling are associated with a growth pattern switch in diabetes-induced renal growth,” Kidney International, vol. 58, no. 1, pp. 162–172, 2000.
[7]  Z. Xu, T. Yoo, D. Ryu et al., “Angiotensin II receptor blocker inhibits p27Kip1 expression in glucose-stimulated podocytes and in diabetic glomeruli,” Kidney International, vol. 67, no. 3, pp. 944–952, 2005.
[8]  T. Pantsulaia, “Role of TGF-beta in pathogenesis of diabetic nephropathy,” Georgian medical news., no. 131, pp. 13–18, 2006.
[9]  G. Wolf, R. Schroeder, F. Thaiss, F. N. Ziyadeh, U. Helmchen, and R. A. K. Stahl, “Glomerular expression of p27(Kip1) in diabetic db/db mouse: role of hyperglycemia,” Kidney International, vol. 53, no. 4, pp. 869–879, 1998.
[10]  S. V. Ekholm and S. I. Reed, “Regulation of G1 cyclin-dependent kinases in the mammalian cell cycle,” Current Opinion in Cell Biology, vol. 12, no. 6, pp. 676–684, 2000.
[11]  S. Santos, R. J. Bosch, A. Ortega et al., “Up-regulation of parathyroid hormone-related protein in folic acid-induced acute renal failure,” Kidney International, vol. 60, no. 3, pp. 982–995, 2001.
[12]  P. Esbrit, S. Santos, A. Ortega et al., “Parathyroid hormone-related protein as a renal regulating factor: from vessels to glomeruli and tubular epithelium,” American Journal of Nephrology, vol. 21, no. 3, pp. 179–184, 2001.
[13]  R. J. Bosch, P. Rojo-Linares, G. Torrecillas-Casamayor, M. C. Iglesias-Cruz, D. Rodríguez-Puyol, and M. Rodríguez-Puyol, “Effects of parathyroid hormone-related protein on human mesangial cells in culture,” American Journal of Physiology, vol. 277, no. 6, pp. E990–E995, 1999.
[14]  T. Massfelder, N. Parekh, K. Endlich, C. Saussine, M. Steinhausen, and J. Helwig, “Effect of intrarenally infused parathyroid hormone-related protein on renal blood flow and glomerular filtration rate in the anaesthetized rat,” British Journal of Pharmacology, vol. 118, no. 8, pp. 1995–2000, 1996.
[15]  N. Endlich, R. Nobiling, W. Kriz, and K. Endlich, “Expression and signaling of parathyroid hormone-related protein in cultured podocytes,” Experimental Nephrology, vol. 9, no. 6, pp. 436–443, 2001.
[16]  N. E. Soifer, S. K. Van Why, M. B. Ganz, M. Kashgarian, N. J. Siegel, and A. F. Stewart, “Expression of parathyroid hormone-related protein in the rat glomerulus and tubule during recovery from renal ischemia,” Journal of Clinical Investigation, vol. 92, no. 6, pp. 2850–2857, 1993.
[17]  A. Garcia-Ocana, F. De Miguel, C. Penaranda, J. P. Albar, J. L. Sarasa, and P. Esbrit, “Parathyroid hormone-related protein is an autocrine modulator of rabbit proximal tubule cell growth,” Journal of Bone and Mineral Research, vol. 10, no. 12, pp. 1875–1884, 1995.
[18]  R. Largo, D. Gómez-Garre, S. Santos et al., “Renal expression of parathyroid hormone-related protein (PTHrP) and PTH/PTHrP receptor in a rat model of tubulointerstitial damage,” Kidney International, vol. 55, no. 1, pp. 82–90, 1999.
[19]  R. J. Bosch, A. Ortega, A. Izquierdo, I. Arribas, J. Bover, and P. Esbrit, “A transgenic mouse model for studying the role of the parathyroid hormone-related protein system in renal injury,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 290874, 7 pages, 2011.
[20]  A. Izquierdo, P. López-Luna, A. Ortega et al., “The parathyroid hormone-related protein system and diabetic nephropathy outcome in streptozotocin-induced diabetes,” Kidney International, vol. 69, no. 12, pp. 2171–2178, 2006.
[21]  M. L. Gross, E. Ritz, A. Schoof et al., “Comparison of renal morphology in the Streptozotocin and the SHR/N-cp models of diabetes,” Laboratory Investigation, vol. 84, no. 4, pp. 452–464, 2004.
[22]  M. P. O'Donnell, C. C. Chao, G. Gekker, K. S. Modi, B. L. Kasiske, and W. F. Keane, “Renal cell cytokine production stimulates HIV-1 expression in chronically HIV-1-infected monocytes,” Kidney International, vol. 53, no. 3, pp. 593–597, 1998.
[23]  M. Romero, A. Ortega, A. Izquierdo, P. López-Luna, and R. J. Bosch, “Parathyroid hormone-related protein induces hypertrophy in podocytes via TGF-β1 and p27Kip1: Implications for diabetic nephropathy,” Nephrology Dialysis Transplantation, vol. 25, no. 8, pp. 2447–2457, 2010.
[24]  N. M. Fiaschi-Taesch, S. Santos, V. Reddy et al., “Prevention of acute ischemic renal failure by targeted delivery of growth factors to the proximal tubule in transgenic mice: the efficacy of parathyroid hormone-related protein and hepatocyte growth factor,” Journal of the American Society of Nephrology, vol. 15, no. 1, pp. 112–125, 2004.
[25]  G. Wolf, K. Sharma, Y. Chen, M. Ericksen, and F. N. Ziyadeh, “High glucose-induced proliferation in mesangial cells is reversed by autocrine TGF-β,” Kidney International, vol. 42, no. 3, pp. 647–656, 1992.
[26]  F. G. Cosio, “Effects of high glucose concentrations on human mesangial cell proliferation,” Journal of the American Society of Nephrology, vol. 5, no. 8, pp. 1600–1609, 1995.
[27]  M. Isono, A. Mogyorósi, D. C. Han, B. B. Hoffman, and F. N. Ziyadeh, “Stimulation of TGF-β type II receptor by high glucose in mouse mesangial cells and in diabetic kidney,” American Journal of Physiology, vol. 278, no. 5, pp. F830–F838, 2000.
[28]  D. Rámila, J. A. Ardura, V. Esteban et al., “Parathyroid hormone-related protein promotes inflammation in the kidney with an obstructed ureter,” Kidney International, vol. 73, no. 7, pp. 835–847, 2008.
[29]  J. A. Ardura, R. Berruguete, D. Rámila, M. V. Alvarez-Arroyo, and P. Esbrit, “Parathyroid hormone-related protein interacts with vascular endothelial growth factor to promote fibrogenesis in the obstructed mouse kidney,” American Journal of Physiology, vol. 295, no. 2, pp. F415–F425, 2008.
[30]  G. Wolf and F. N. Ziyadeh, “Molecular mechanisms of diabetic renal hypertrophy,” Kidney International, vol. 56, no. 2, pp. 393–405, 1999.
[31]  J. Sun, Y. Xu, H. Deng, S. Sun, Z. Dai, and Y. Sun, “Involvement of osteopontin upregulation on mesangial cells growth and collagen synthesis induced by intermittent high glucose,” Journal of Cellular Biochemistry, vol. 109, no. 6, pp. 1210–1221, 2010.
[32]  G. Wolf, “Cell cycle regulation in diabetic nephropathy,” Kidney Internationa, vol. 58, no. 77, pp. S59–S66, 2000.
[33]  L. Hengst and S. I. Reed, “Inhibitors of the Cip/Kip family,” Current Topics in Microbiology and Immunology, vol. 227, pp. 25–41, 1997.
[34]  G. Wolf, R. Schroeder, F. N. Ziyadeh, F. Thaiss, G. Zahner, and R. A. K. Stahl, “High glucose stimulates expression of p27(Kip1) in cultured mouse mesangial cells: relationship to hypertrophy,” American Journal of Physiology, vol. 273, no. 3, pp. F348–F356, 1997.
[35]  Y. Nishikawa, M. Wang, and B. I. Carr, “Changes in TGF-beta receptors of rat hepatocytes during primary culture and liver regeneration: increased expression of TGF-beta receptors associated with increased sensitivity to TGF-beta-mediated growth inhibition,” Journal of Cellular Physiology, vol. 176, pp. 612–623, 1998.
[36]  M. E. Kadin, M. W. Cavaille-Coll, R. Gertz, J. Massagué, S. Cheifetz, and D. George, “Loss of receptors for transforming growth factor β in human T-cell malignancies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 13, pp. 6002–6006, 1994.
[37]  J. Wang, W. Han, E. Zborowska et al., “Reduced expression of transforming growth factor β type I receptor contributes to the malignancy of human colon carcinoma cells,” The Journal of Biological Chemistry, vol. 271, no. 29, pp. 17366–17371, 1996.
[38]  R. C. Harris and M. Martinez-Maldonado, “Angiotensin II-mediated renal injury,” Mineral and Electrolyte Metabolism, vol. 21, no. 4-5, pp. 328–335, 1995.
[39]  A. Ortega, D. Rámila, A. Izquierdo et al., “Role of the renin-angiotensin system on the parathyroid hormone-related protein overexpression induced by nephrotoxic acute renal failure in the rat,” Journal of the American Society of Nephrology, vol. 16, no. 4, pp. 939–949, 2005.
[40]  J. Kontogiannis and K. D. Burns, “Role of AT1 angiotensin II receptors in renal ischemic injury,” American Journal of Physiology, vol. 274, no. 1, pp. F79–F90, 1998.
[41]  G. W. Long, D. C. Misra, R. Juleff, G. Blossom, P. F. Czako, and J. L. Glover, “Protective effects of enalaprilat against postischemic renal failure,” Journal of Surgical Research, vol. 54, no. 3, pp. 254–257, 1993.
[42]  R. C. Abdulkader, M. M. Yuki, A. C. M. Paiva, and M. Marcondes, “Prolonged inhibition of angiotensin II attenuates glycerol-induced acute renal failure,” Brazilian Journal of Medical and Biological Research, vol. 21, no. 2, pp. 233–239, 1988.
[43]  O. Lorenzo, M. Ruiz-Ortega, P. Esbrit et al., “Angiotensin II increases parathyroid hormone-related protein (PTHrP) and the type 1 PTH/PTHrP receptor in the kidney,” Journal of the American Society of Nephrology, vol. 13, no. 6, pp. 1595–1607, 2002.
[44]  M. Nodat, T. Katoh, N. Takuwa, M. Kumada, K. Kurokawa, and Y. Takuwa, “Synergistic stimulation of parathyroid hormone-related peptide gene expression by mechanical stretch and angiotensin II in rat aortic smooth muscle cells,” The Journal of Biological Chemistry, vol. 269, no. 27, pp. 17911–17917, 1994.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133