Proliferative diabetic retinopathy (PDR) is the leading cause of blindness in working age Americans. We demonstrated that diabetes disturbs the homeostasis of nerve growth factor (NGF) resulting in accumulation of its precursor proNGF. Increases in proNGF were positively correlated with progression of diabetic retinopathy, having the highest level in ocular fluids from PDR patients compared to nondiabetic patients. Here, we attempted to evaluate the contribution and the possible mechanism of proNGF to PDR. The angiogenic response of aqueous humor samples from PDR patients was examined in human retinal endothelial cells in the presence or absence of anti-proNGF antibody. Additional cultures were treated with mutant-proNGF in the presence of specific pharmacological inhibitors of TrkA and receptors. PDR-aqueous humor samples exerted significant angiogenic response including cell proliferation, migration, and alignment into tube-like structures. These effects were significantly reduced by anti-proNGF antibody but not by IgG. Treatment of retinal endothelial cells with mutant-proNGF activated phosphorylation of TrkA and p38MAPK; however, it did not alter expression. Inhibition of TrkA but not significantly reduced mutant-proNGF-induced cell proliferation, cell migration, and tube formation. Taken together, these results provide evidence that proNGF can contribute to PDR at least in part via activation of TrkA. 1. Introduction Diabetic retinopathy (DR) is the leading cause of blindness among working aged adults in the US. It affects 80% of individuals with a 10-year history of diabetes, adding 63,000 new cases of DR each year [1]. DR is characterized by neuro- and vascular degeneration that eventually lead to ischemia and subsequent release of angiogenic growth factors including vascular endothelial growth factor (VEGF) into the vitreous cavity resulting in retinal neovascularization and proliferative diabetic retinopathy (PDR) [2, 3]. PDR is characterized by vitreous hemorrhage, neovascular glaucoma, and tractional retinal detachment, which can result in visual loss [4]. Current treatment options for PDR include laser photocoagulation and anti-VEGF ocular injection, which are invasive and limited by side effects. Repeated injections of anti-VEGF can deprive the retina from the survival actions of VEGF on neurons and vasculature (reviewed in [2, 5]). Therefore, there is a great need to identify contributing factors in PDR other than VEGF; in the hope of devising treatments that will preserve both retina vasculature and neuronal function. Diabetes-induced
References
[1]
N. M. Bressler, A. R. Edwards, R. W. Beck et al., “Exploratory analysis of diabetic retinopathy progression through 3 years in a randomized clinical trial that compares intravitreal triamcinolone acetonide with focal/grid photocoagulation,” Archives of Ophthalmology, vol. 127, no. 12, pp. 1566–1571, 2009.
[2]
T. K. Ali and A. B. El-Remessy, “Diabetic retinopathy: current management and experimental therapeutic targets,” Pharmacotherapy, vol. 29, no. 2, pp. 182–192, 2009.
[3]
H. Noma, H. Funatsu, M. Yamasaki et al., “Aqueous humour levels of cytokines are correlated to vitreous levels and severity of macular oedema in branch retinal vein occlusion,” Eye, vol. 22, no. 1, pp. 42–48, 2008.
[4]
P. Kroll, E. B. Rodrigues, and S. Hoerle, “Pathogenesis and classification of proliferative diabetic vitreoretinopathy,” Ophthalmologica, vol. 221, no. 2, pp. 78–94, 2007.
[5]
W. Whitmire, M. M. H. Al-Gayyar, M. Abdelsaid, B. K. Yousufzai, and A. B. El-Remessy, “Alteration of growth factors and neuronal death in diabetic retinopathy: what we have learned so far,” Molecular Vision, vol. 17, pp. 300–308, 2011.
[6]
J. Tang and T. S. Kern, “Inflammation in diabetic retinopathy,” Progress in Retinal and Eye Research, vol. 30, no. 5, pp. 343–358, 2011.
[7]
A. B. El-Remessy, M. Al-Shabrawey, Y. Khalifa, N.-T. Tsai, R. B. Caldwell, and G. I. Liou, “Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes,” American Journal of Pathology, vol. 168, no. 1, pp. 235–244, 2006.
[8]
M. S. Ola, M. I. Nawaz, A. A. El-Asrar, M. Abouammoh, and A. S. Alhomida, “Reduced levels of brain derived neurotrophic factor (BDNF) in the serum of diabetic retinopathy patients and in the retina of diabetic rats,” Cellular and Molecular Neurobiology, no. 33, pp. 359–367, 2013.
[9]
K. S. Park, S. S. Kim, J. C. Kim et al., “Serum and tear levels of nerve growth factor in diabetic retinopathy patients,” American Journal of Ophthalmology, vol. 145, no. 3, pp. 432–437, 2008.
[10]
T. K. Ali, M. M. H. Al-Gayyar, S. Matragoon et al., “Diabetes-induced peroxynitrite impairs the balance of pro-nerve growth factor and nerve growth factor, and causes neurovascular injury,” Diabetologia, vol. 54, no. 3, pp. 657–668, 2011.
[11]
M. M. H. Al-Gayyar, S. Matragoon, B. A. Pillai, T. K. Ali, M. A. Abdelsaid, and A. B. El-Remessy, “Epicatechin blocks pro-nerve growth factor (proNGF)-mediated retinal neurodegeneration via inhibition of p75 neurotrophin receptor proNGF expression in a rat model of diabetes,” Diabetologia, vol. 54, no. 3, pp. 669–680, 2011.
[12]
A. Micera, A. Lambiase, B. Stampachiacchiere, S. Bonini, S. Bonini, and F. Levi-Schaffer, “Nerve growth factor and tissue repair remodeling: and , two receptors one fate,” Cytokine and Growth Factor Reviews, vol. 18, no. 3-4, pp. 245–256, 2007.
[13]
A. Micera, A. Lambiase, I. Puxeddu et al., “Nerve growth factor effect on human primary fibroblastic-keratocytes: possible mechanism during corneal healing,” Experimental Eye Research, vol. 83, no. 4, pp. 747–757, 2006.
[14]
G. Graiani, C. Emanueli, E. Desortes et al., “Nerve growth factor promotes reparative angiogenesis and inhibits endothelial apoptosis in cutaneous wounds of type 1 diabetic mice,” Diabetologia, vol. 47, no. 6, pp. 1047–1054, 2004.
[15]
M. Meloni, A. Caporali, G. Graiani et al., “Nerve growth factor promotes cardiac repair following myocardial infarction,” Circulation Research, vol. 106, no. 7, pp. 1275–1284, 2010.
[16]
C. S. von Bartheld, “Neurotrophins in the developing and regenerating visual system,” Histology and Histopathology, vol. 13, no. 2, pp. 437–459, 1998.
[17]
M. Blais, P. Lévesque, S. Bellenfant, and F. Berthod, “Nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 and glial-derived neurotrophic factor enhance angiogenesis in a tissue-engineered in vitro model,” Tissue Engineering A, vol. 19, no. 15-16, pp. 1655–1664, 2013.
[18]
C. S. Jadhao, A. D. Bhatwadekar, Y. Jiang, M. E. Boulton, J. J. Steinle, and M. B. Grant, “Nerve growth factor promotes endothelial progenitor cell-mediated angiogenic responses,” Investigative Ophthalmology & Visual Science, vol. 53, pp. 2030–2037, 2012.
[19]
R. Lee, P. Kermani, K. K. Teng, and B. L. Hempstead, “Regulation of cell survival by secreted proneurotrophins,” Science, vol. 294, no. 5548, pp. 1945–1948, 2001.
[20]
M. A. Abdelsaid, B. A. Pillai, S. Matragoon, R. Prakash, M. Al-Shabrawey, and A. B. El-Remessy, “Early intervention of tyrosine nitration prevents vaso-obliteration and neovascularization in ischemic retinopathy,” The Journal of Pharmacology and Experimental Therapeutics, vol. 332, no. 1, pp. 125–134, 2010.
[21]
L. LeSauteur, L. Wei, B. F. Gibbs, and H. U. Saragovi, “Small peptide mimics of nerve growth factor bind TrkA receptors and affect biological responses,” The Journal of Biological Chemistry, vol. 270, no. 12, pp. 6564–6569, 1995.
[22]
M. A. Abdelsaid and A. B. El-Remessy, “S-glutathionylation of LMW-PTP regulates VEGF-mediated FAK activation and endothelial cell migration,” Journal of Cell Science, vol. 125, pp. 4751–4760, 2012.
[23]
A. B. El-Remessy, M. Al-Shabrawey, D. H. Platt et al., “Peroxynitrite mediates VEGF's angiogenic signal and function via a nitration-independent mechanism in endothelial cells,” FASEB Journal, vol. 21, no. 10, pp. 2528–2539, 2007.
[24]
A. Kozak, A. Ergul, A. B. El-Remessy et al., “Candesartan augments ischemia-induced proangiogenic state and results in sustained improvement after stroke,” Stroke, vol. 40, no. 5, pp. 1870–1876, 2009.
[25]
X. Liu, D. Wang, Y. Liu et al., “Neuronal-driven angiogenesis: role of NGF in retinal neovascularization in an oxygen-induced retinopathy model,” Investigative Ophthalmology & Visual Science, vol. 51, no. 7, pp. 3749–3757, 2010.
[26]
H. Kim, Q. Li, B. L. Hempstead, and J. A. Madri, “Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells,” The Journal of Biological Chemistry, vol. 279, no. 32, pp. 33538–33546, 2004.
[27]
T. K. Ali, S. Matragoon, B. A. Pillai, G. I. Liou, and A. B. El-Remessy, “Peroxynitrite mediates retinal neurodegeneration by inhibiting nerve growth factor survival signaling in experimental and human diabetes,” Diabetes, vol. 57, no. 4, pp. 889–898, 2008.
[28]
S. Loukovaara, A. Robciuc, J. M. Holopainen, et al., “Ang-2 upregulation correlates with increased levels of MMP-9, VEGF, EPO and TGFβ1 in diabetic eyes undergoing vitrectomy,” Acta Ophthalmologica, 2012.
[29]
N. Mohan, F. Monickaraj, M. Balasubramanyam, M. Rema, and V. Mohan, “Imbalanced levels of angiogenic and angiostatic factors in vitreous, plasma and postmortem retinal tissue of patients with proliferative diabetic retinopathy,” Journal of Diabetes and Its Complications, vol. 26, pp. 435–441, 2012.
[30]
Y. Suzuki, M. Nakazawa, K. Suzuki, H. Yamazaki, and Y. Miyagawa, “Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion,” Japanese Journal of Ophthalmology, vol. 55, no. 3, pp. 256–263, 2011.
[31]
H. F. Elewa, A. B. El-Remessy, P. R. Somanath, and S. C. Fagan, “Diverse effects of statins on angiogenesis: new therapeutic avenues,” Pharmacotherapy, vol. 30, no. 2, pp. 169–176, 2010.
[32]
M. Boodhwani and F. W. Sellke, “Therapeutic angiogenesis in diabetes and hypercholesterolemia: influence of oxidative stress,” Antioxidants & Redox Signaling, vol. 11, no. 8, pp. 1945–1959, 2009.
[33]
C. Emanueli and P. Madeddu, “Therapeutic angiogenesis: translating experimental concepts to medically relevant goals,” Vascular Pharmacology, vol. 45, no. 5, pp. 334–339, 2006.
[34]
M. B. Salis, G. Graiani, E. Desortes, R. B. Caldwell, P. Madeddu, and C. Emanueli, “Nerve growth factor supplementation reverses the impairment, induced by type 1 diabetes, of hindlimb post-ischaemic recovery in mice,” Diabetologia, vol. 47, no. 6, pp. 1055–1063, 2004.
[35]
S. T. Azar, S. C. Major, and B. Safieh-Garabedian, “Altered plasma levels of nerve growth factor and transforming growth factor-β2 in type-1 diabetes mellitus,” Brain, Behavior, and Immunity, vol. 13, no. 4, pp. 361–366, 1999.
[36]
G. Cantarella, L. Lempereur, M. Presta et al., “Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo,” FASEB Journal, vol. 16, no. 10, pp. 1307–1309, 2002.
[37]
J.-P. Dollé, A. Rezvan, F. D. Allen, P. Lazarovici, and P. I. Lelkes, “Nerve growth factor-induced migration of endothelial cells,” The Journal of Pharmacology and Experimental Therapeutics, vol. 315, no. 3, pp. 1220–1227, 2005.
[38]
P. Lazarovici, A. Gazit, I. Staniszewska, C. Marcinkiewicz, and P. I. Lelkes, “Nerve growth factor (NGF) promotes angiogenesis in the quail chorioallantoic membrane,” Endothelium, vol. 13, no. 1, pp. 51–59, 2006.
[39]
A. Alhusban, A. Kozak, A. Ergul, and S. C. Fagan, “AT1 receptor antagonism is proangiogenic in the brain: BDNF a novel mediator,” The Journal of Pharmacology and Experimental Therapeutics, vol. 344, pp. 348–359, 2013.
[40]
L. Shen, W. Zeng, Y. X. Wu, et al., “Neurotrophin-3 accelerates wound healing in diabetic mice by promoting a paracrine response in mesenchymal stem cells,” Cell Transplantation, vol. 22, no. 6, pp. 1011–1021, 2012.
[41]
Y. Demont, C. Corbet, A. Page et al., “Pro-nerve growth factor induces autocrine stimulation of breast cancer cell invasion through tropomyosin-related kinase A (TrkA) and sortilin protein,” The Journal of Biological Chemistry, vol. 287, no. 3, pp. 1923–1931, 2012.
[42]
M. M. Berg, D. W. Sternberg, L. F. Parada, and M. V. Chao, “K-252a inhibits nerve growth factor-induced trk proto-oncogene tyrosine phosphorylation and kinase activity,” The Journal of Biological Chemistry, vol. 267, no. 1, pp. 13–16, 1992.
[43]
S. O. Yoon, S. P. Soltoff, and M. V. Chao, “A dominant role of the juxtamembrane region of the TrkA nerve growth factor receptor during neuronal cell differentiation,” The Journal of Biological Chemistry, vol. 272, no. 37, pp. 23231–23238, 1997.
[44]
C. Lagadec, S. Meignan, E. Adriaenssens et al., “TrkA overexpression enhances growth and metastasis of breast cancer cells,” Oncogene, vol. 28, no. 18, pp. 1960–1970, 2009.
[45]
V. Freund-Michel, C. Bertrand, and N. Frossard, “TrkA signalling pathways in human airway smooth muscle cell proliferation,” Cellular Signalling, vol. 18, no. 5, pp. 621–627, 2006.
[46]
S. J. Baker and E. P. Reddy, “Modulation of life and death by the TNF receptor superfamily,” Oncogene, vol. 17, no. 25, pp. 3261–3270, 1998.
[47]
A. B. Cragnolini and W. J. Friedman, “The function of in glia,” Trends in Neurosciences, vol. 31, no. 2, pp. 99–104, 2008.
[48]
C. F. Ibáez, “Jekyll-Hyde neurotrophins: the story of proNGF,” Trends in Neurosciences, vol. 25, no. 6, pp. 284–286, 2002.
[49]
P. P. Roux and P. A. Barker, “Neurotrophin signaling through the p75 neurotrophin receptor,” Progress in Neurobiology, vol. 67, no. 3, pp. 203–233, 2002.
[50]
M. M. H. Al-Gayyar, B. A. Mysona, S. Matragoon, et al., “Diabetes and overexpression of proNGF cause retinal neurodegeneration via activation of RhoA pathway,” PLoS One, vol. 8, no. 1, Article ID e54692, 2013.
[51]
A. B. El-Remessy, M. M. H. Al-Gayyar, S. Matragoon, and H. U. Saragovi, “Overexpression of ProNGF induces apoptosis and acellular capillary formation via activation of ,” Investigative Ophthalmology & Visual Science, vol. 53, article 5570, 2012.
[52]
R. S. Kenchappa, N. Zampieri, M. V. Chao et al., “Ligand-dependent cleavage of the P75 neurotrophin receptor is necessary for NRIF nuclear translocation and apoptosis in sympathetic neurons,” Neuron, vol. 50, no. 2, pp. 219–232, 2006.
[53]
S. Matragoon, M. M. H. Al-Gayyar, B. A. Mysona, et al., “Electroporation-mediated gene delivery of cleavage-resistant pro-nerve growth factor causes retinal neuro- and vascular degeneration,” Molecular Vision, vol. 18, pp. 2993–3003, 2012.
[54]
F. Lebrun-Julien, M. J. Bertrand, O. de Backer et al., “ProNGF induces TNFα-dependent death of retinal ganglion cells through a non-cell-autonomous signaling pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 8, pp. 3817–3822, 2010.
[55]
B. A. Mysona, M. A. Abdelsaid, S. Matragoon, B. A. Pillai, and A. B. El-Remessy, “Inflammatory role of ProNGF/ in muller cells of the diabetic retina,” Investigative Ophthalmology & Visual Science, vol. 53, article 2003, 2012.
[56]
A. Caporali, E. Pani, A. J. G. Horrevoets et al., “Neurotrophin p75 receptor ( ) promotes endothelial cell apoptosis and inhibits angiogenesis: implications for diabetes-induced impaired neovascularization in ischemic limb muscles,” Circulation Research, vol. 103, no. 2, pp. e15–e26, 2008.
[57]
S. Grade, Y. C. Weng, M. Snapyan, J. Kriz, J. O. Malva, and A. Saghatelyan, “Brain-derived neurotrophic factor promotes vasculature-associated migration of neuronal precursors toward the ischemic striatum,” PLoS ONE, vol. 8, no. 1, Article ID e55039, 2013.
[58]
M. Snapyan, M. Lemasson, M. S. Brill et al., “Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling,” The Journal of Neuroscience, vol. 29, no. 13, pp. 4172–4188, 2009.
[59]
L. W. Meuchel, M. A. Thompson, S. D. Cassivi, C. M. Pabelick, and Y. S. Prakash, “Neurotrophins induce nitric oxide generation in human pulmonary artery endothelial cells,” Cardiovascular Research, vol. 91, no. 4, pp. 668–676, 2011.