全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MicroRNA in Diabetic Nephropathy: Renin Angiotensin, AGE/RAGE, and Oxidative Stress Pathway

DOI: 10.1155/2013/173783

Full-Text   Cite this paper   Add to My Lib

Abstract:

MicroRNAs (miRNA) are a novel class of small, noncoding RNA molecules that have gained the attention of many researchers in recent years due to their ability to posttranscriptionally regulate the expression of families of genes simultaneously. Their role in normal physiology and pathobiology is intriguing and their regulation in normal and disease states is fascinating. That the cells can return to a state of homeostasis when these small molecules are perturbed is truly remarkable given the multiple cellular targets of each miRNA and that many mRNAs are targeted by multiple miRNAs. Several reviews have covered aspects of miRNA function in biology and disease. Here, we review the role of miRNA in regulating the renin-angiotensin system, AGE/RAGE signalling, and under conditions of oxidative stress in the context of diabetic nephropathy. 1. Introduction The World Health Organization states that ~347 million people, roughly 9.5% of the adult population, were suffering from diabetes in 2008 [1]. The incidence of diabetes is rapidly increasing with estimates suggesting that this number will almost double by 2030. Diabetes mellitus is a major cause of chronic kidney disease (CKD) worldwide and is associated with enhanced morbidity and mortality, in particular accelerated cardiovascular disease [2, 3]. Diabetic nephropathy (DN) is now the most common cause of end-stage renal failure in the Western world [4]. Clinical associations that frequently precede overt DN are hypertension and poor glycaemic control [5], although a subset of patients develop nephropathy despite the proper glycemic control [6] and normal blood pressure. Once nephropathy is established, blood pressure often rises further, but glycaemic control can paradoxically improve as a result of reduced renal insulin clearance [7]. It is postulated that the interplay between metabolic and hemodynamic pathways plays an important role in the development and progression of DN [8] (Figure 1). Increased systemic and intraglomerular pressure is associated with increased albuminuria and glomerular injury. Activation of the renin-angiotensin-aldosterone system (RAAS) has been recognized as a key component of DN progression. Additionally, chronic hyperglycemia promotes the generation of advanced glycation end-products (AGEs). It is widely accepted that AGEs mediate their effects both directly and indirectly through receptor-dependent mechanisms. The receptor for AGE (RAGE) acts as a signal transduction receptor, and the RAGE-AGE interaction activates multiple intracellular signalling pathways which increase

References

[1]  G. Danaei, M. M. Finucane, Y. Lu et al., “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” The Lancet, vol. 378, no. 9785, pp. 31–40, 2011.
[2]  P. Stenvinkel, “Chronic kidney disease: a public health priority and harbinger of premature cardiovascular disease,” Journal of Internal Medicine, vol. 268, no. 5, pp. 456–467, 2010.
[3]  M. J. Sarnak, A. S. Levey, A. C. Schoolwerth et al., “Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American heart association councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention,” Circulation, vol. 108, no. 17, pp. 2154–2169, 2003.
[4]  D. T. Gilbertson, J. Liu, J. L. Xue et al., “Projecting the number of patients with end-stage renal disease in the United States to the year 2015,” Journal of the American Society of Nephrology, vol. 16, no. 12, pp. 3736–3741, 2005.
[5]  C. Cull, S. Manley, V. Frighi, R. Holman, and R. Turner, “UK Prospective Diabetes Study (UKPDS). X. Urinary albumin excretion over 3 years in diet-treated Type 2, (non-insulin-dependent) diabetic patients, and association with hypertension, hyperglycaemia and hypertriglyceridaemia,” Diabetologia, vol. 36, no. 10, pp. 1021–1029, 1993.
[6]  H. Shamoon, H. Duffy, N. Fleischer et al., “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” New England Journal of Medicine, vol. 329, no. 14, pp. 977–986, 1993.
[7]  J. A. Amico and I. Klein, “Diabetic management in patients with renal failure,” Diabetes Care, vol. 4, no. 3, pp. 430–434, 1981.
[8]  M. E. Cooper, “Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy,” Diabetologia, vol. 44, no. 11, pp. 1957–1972, 2001.
[9]  H. S. Soifer, J. J. Rossi, and P. S?trom, “MicroRNAs in disease and potential therapeutic applications,” Molecular Therapy, vol. 15, no. 12, pp. 2070–2079, 2007.
[10]  G. Stefani and F. J. Slack, “Small non-coding RNAs in animal development,” Nature Reviews Molecular Cell Biology, vol. 9, no. 3, pp. 219–230, 2008.
[11]  D. P. Bartel, “MicroRNAs: target recognition and regulatory functions,” Cell, vol. 136, no. 2, pp. 215–233, 2009.
[12]  R. C. Friedman, K. K.-H. Farh, C. B. Burge, and D. P. Bartel, “Most mammalian mRNAs are conserved targets of microRNAs,” Genome Research, vol. 19, no. 1, pp. 92–105, 2009.
[13]  R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14,” Cell, vol. 75, no. 5, pp. 843–854, 1993.
[14]  B. J. Reinhart, F. J. Slack, M. Basson et al., “The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans,” Nature, vol. 403, no. 6772, pp. 901–906, 2000.
[15]  M. Lagos-Quintana, R. Rauhut, W. Lendeckel, and T. Tuschl, “Identification of novel genes coding for small expressed RNAs,” Science, vol. 294, no. 5543, pp. 853–858, 2001.
[16]  Y. Lee, M. Kim, J. Han et al., “MicroRNA genes are transcribed by RNA polymerase II,” EMBO Journal, vol. 23, no. 20, pp. 4051–4060, 2004.
[17]  S. Baskerville and D. P. Bartel, “Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes,” RNA, vol. 11, no. 3, pp. 241–247, 2005.
[18]  Y.-K. Kim and V. N. Kim, “Processing of intronic microRNAs,” EMBO Journal, vol. 26, no. 3, pp. 775–783, 2007.
[19]  A. Rodriguez, S. Griffiths-Jones, J. L. Ashurst, and A. Bradley, “Identification of mammalian microRNA host genes and transcription units,” Genome Research, vol. 14, no. 10 A, pp. 1902–1910, 2004.
[20]  D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004.
[21]  R. I. Gregory, K.-P. Yan, G. Amuthan et al., “The Microprocessor complex mediates the genesis of microRNAs,” Nature, vol. 432, no. 7014, pp. 235–240, 2004.
[22]  Y. Lee, C. Ahn, J. Han et al., “The nuclear RNase III Drosha initiates microRNA processing,” Nature, vol. 425, no. 6956, pp. 415–419, 2003.
[23]  T. P. Chendrimada, R. I. Gregory, E. Kumaraswamy et al., “TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing,” Nature, vol. 436, no. 7051, pp. 740–744, 2005.
[24]  E. M. Small and E. N. Olson, “Pervasive roles of microRNAs in cardiovascular biology,” Nature, vol. 469, no. 7330, pp. 336–342, 2011.
[25]  J. Hausser, A. P. Syed, B. Bilen, and M. Zavolan, “Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation,” Genome Research, vol. 23, no. 4, pp. 604–615, 2013.
[26]  I. Lee, S. S. Ajay, I. Y. Jong et al., “New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites,” Genome Research, vol. 19, no. 7, pp. 1175–1183, 2009.
[27]  H. Guo, N. T. Ingolia, J. S. Weissman, and D. P. Bartel, “Mammalian microRNAs predominantly act to decrease target mRNA levels,” Nature, vol. 466, no. 7308, pp. 835–840, 2010.
[28]  A.-B. Shyu, M. F. Wilkinson, and A. Van Hoof, “Messenger RNA regulation: to translate or to degrade,” EMBO Journal, vol. 27, no. 3, pp. 471–481, 2008.
[29]  P. Diehl, A. Fricke, L. Sander et al., “Microparticles: major transport vehicles for distinct microRNAs in circulation,” Cardiovascular Research, vol. 93, no. 4, pp. 633–644, 2012.
[30]  J. M. Lorenzen, H. Haller, and T. Thum, “MicroRNAs as mediators and therapeutic targets in chronic kidney disease,” Nature Reviews Nephrology, vol. 7, no. 5, pp. 286–294, 2011.
[31]  M. L. S. Sequeira López, E. S. Pentz, T. Nomasa, O. Smithies, and R. A. Gomez, “Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened,” Developmental Cell, vol. 6, no. 5, pp. 719–728, 2004.
[32]  M. L. S. Sequeira-Lopez, E. T. Weatherford, G. R. Borges et al., “The microRNA-processing enzyme dicer maintains juxtaglomerular cells,” Journal of the American Society of Nephrology, vol. 21, no. 3, pp. 460–467, 2010.
[33]  F. Z. Marques, A. E. Campain, M. Tomaszewski et al., “Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs,” Hypertension, vol. 58, no. 6, pp. 1093–1098, 2011.
[34]  N. X. Chen, K. Kiattisunthorn, K.D. O'Neill, et al., “Decreased microRNA is involved in the vascular remodeling abnormalities in chronic kidney disease (CKD),” PloS ONE, vol. 8, Article ID e64558, 2013.
[35]  P. L. Jeppesen, G. L. Christensen, M. Schneider et al., “Angiotensin II type 1 receptor signalling regulates microRNA differentially in cardiac fibroblasts and myocytes,” British Journal of Pharmacology, vol. 164, no. 2, pp. 394–404, 2011.
[36]  T. V. Eskildsen, P. L. Jeppesen, M. Schneider, et al., “Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans,” International Journal of Molecular Sciences, vol. 14, pp. 11190–11207, 2013.
[37]  A. S. Go, G. M. Chertow, D. Fan, C. E. McCulloch, and C.-Y. Hsu, “Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization,” New England Journal of Medicine, vol. 351, no. 13, pp. 1296–1370, 2004.
[38]  M.-X. Fu, K. J. Wells-Knecht, J. A. Blackledge, T. J. Lyons, S. R. Thorpe, and J. W. Baynes, “Glycation, glycoxidation, and cross-linking of collagen by glucose: kinetics, mechanisms, and inhibition of late stages of the Maillard reaction,” Diabetes, vol. 43, no. 5, pp. 676–683, 1994.
[39]  L. Gu, S. Hagiwara, Q. Fan et al., “Role of receptor for advanced glycation end-products and signalling events in advanced glycation end-product-induced monocyte chemoattractant protein-1 expression in differentiated mouse podocytes,” Nephrology Dialysis Transplantation, vol. 21, no. 2, pp. 299–313, 2006.
[40]  S. Shi, L. Yu, C. Chiu et al., “Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis,” Journal of the American Society of Nephrology, vol. 19, no. 11, pp. 2159–2169, 2008.
[41]  N. Shanmugam, M. A. Reddy, and R. Natarajan, “Distinct roles of heterogeneous nuclear ribonuclear protein K and microRNA-16 in cyclooxygenase-2 RNA stability induced by S100b, a ligand of the receptor for advanced glycation end products,” Journal of Biological Chemistry, vol. 283, no. 52, pp. 36221–36233, 2008.
[42]  L.-M. Li, D.-X. Hou, Y.-L. Guo et al., “Role of microRNA-214-targeting phosphatase and tensin homolog in advanced glycation end product-induced apoptosis delay in monocytes,” Journal of Immunology, vol. 186, no. 4, pp. 2552–2560, 2011.
[43]  S. Mardente, E. Mari, F. Consorti, et al., “HMGB1 induces the overexpression of miR-222 and miR-221 and increases growth and motility in papillary thyroid cancer cells,” Oncology Reports, vol. 28, pp. 2285–2289, 2012.
[44]  X. Liu, Y. Cheng, S. Zhang, Y. Lin, J. Yang, and C. Zhang, “A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia,” Circulation Research, vol. 104, no. 4, pp. 476–486, 2009.
[45]  G. Togliatto, A. Trombetta, P. Dentelli, A. Rosso, and M. F. Brizzi, “MIR221/MIR222-driven post-transcriptional regulation of P27KIP1 and P57KIP2 is crucial for high-glucose- and AGE-mediated vascular cell damage,” Diabetologia, vol. 54, no. 7, pp. 1930–1940, 2011.
[46]  L. Fiorentino, M. Cavalera, and M. Mavilio, “Regulation of TIMP3 in diabetic nephropathy: a role for microRNAs,” Acta Diabetologica, 2013.
[47]  L. Poliseno, A. Tuccoli, L. Mariani et al., “MicroRNAs modulate the angiogenic properties of HUVECs,” Blood, vol. 108, no. 9, pp. 3068–3071, 2006.
[48]  Y. Li, Y.-H. Song, F. Li, T. Yang, Y. W. Lu, and Y.-J. Geng, “microRNA-221 regulates high glucose-induced endothelial dysfunction,” Biochemical and Biophysical Research Communications, vol. 381, no. 1, pp. 81–83, 2009.
[49]  Y. Suárez, C. Fernández-Hernando, J. S. Pober, and W. C. Sessa, “Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells,” Circulation Research, vol. 100, no. 8, pp. 1164–1173, 2007.
[50]  N. Zhu, D. Zhang, S. Chen et al., “Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration,” Atherosclerosis, vol. 215, no. 2, pp. 286–293, 2011.
[51]  N. Bashan, J. Kovsan, I. Kachko, H. Ovadia, and A. Rudich, “Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species,” Physiological Reviews, vol. 89, no. 1, pp. 27–71, 2009.
[52]  H. Kaneto, N. Katakami, D. Kawamori et al., “Involvement of oxidative stress in the pathogenesis of diabetes,” Antioxidants and Redox Signaling, vol. 9, no. 3, pp. 355–366, 2007.
[53]  P. S. Gill and C. S. Wilcox, “NADPH oxidases in the kidney,” Antioxidants and Redox Signaling, vol. 8, no. 9-10, pp. 1597–1607, 2006.
[54]  A. Palicz, T. R. Foubert, A. J. Jesaitis, L. Marodi, and L. C. McPhail, “Phosphatidic acid and diacylglycerol directly activate NADPH oxidase by interacting with enzyme components,” Journal of Biological Chemistry, vol. 276, no. 5, pp. 3090–3097, 2001.
[55]  M. Sedeek, G. Callera, A. Montezano et al., “Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy,” American Journal of Physiology. Renal Physiology, vol. 299, no. 6, pp. F1348–F1358, 2010.
[56]  J. M. Forbes, M. T. Coughlan, and M. E. Cooper, “Oxidative stress as a major culprit in kidney disease in diabetes,” Diabetes, vol. 57, no. 6, pp. 1446–1454, 2008.
[57]  A. A. Eid, Y. Gorin, B. M. Fagg et al., “Mechanisms of podocyte injury in diabetes role of cytochrome P450 and NADPH oxidases,” Diabetes, vol. 58, no. 5, pp. 1201–1211, 2009.
[58]  Q. Wang, Y. Wang, A. W. Minto et al., “MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy,” FASEB Journal, vol. 22, no. 12, pp. 4126–4135, 2008.
[59]  R. Chhabra, Y. K. Adlakha, M. Hariharan, V. Scaría, and N. Saini, “Upregulation of miR-23a~27a~24-2 cluster induces caspase-dependent and -independent apoptosis in human embryonic kidney cells,” PLoS ONE, vol. 4, no. 6, Article ID e5848, 2009.
[60]  R. Chhabra, R. Dubey, and N. Saini, “Gene expression profiling indicate role of ER stress in miR-23a~27a~24-2 cluster induced apoptosis in HEK293T cells,” RNA Biology, vol. 8, no. 4, pp. 648–664, 2011.
[61]  H. Shang, E. Nitsche, and X. Jing, “Inhibition of TGF-b signaling by miR-23b,” Journal of the American Society of Nephrology, 143A, 2008.
[62]  G. Rao, E. Xia, and A. Richardson, “Effect of age on the expression of antioxidant enzymes in male Fischer F344 rats,” Mechanisms of Ageing and Development, vol. 53, no. 1, pp. 49–60, 1990.
[63]  Q. Meng, Y. T. Wong, J. Chen, and R. Ruan, “Age-related changes in mitochondrial function and antioxidative enzyme activity in fischer 344 rats,” Mechanisms of Ageing and Development, vol. 128, no. 3, pp. 286–292, 2007.
[64]  X.-Y. Bai, Y. Ma, R. Ding, B. Fu, S. Shi, and X.-M. Chen, “miR-335 and miR-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes,” Journal of the American Society of Nephrology, vol. 22, no. 7, pp. 1252–1261, 2011.
[65]  G. Mattiasson and P. G. Sullivan, “The emerging functions of UCP2 in health, disease, and therapeutics,” Antioxidants and Redox Signaling, vol. 8, no. 1-2, pp. 1–38, 2006.
[66]  J. Pi, Y. Bai, K. W. Daniel et al., “Persistent oxidative stress due to absence of uncoupling protein 2 associated with impaired pancreatic β-cell function,” Endocrinology, vol. 150, no. 7, pp. 3040–3048, 2009.
[67]  S. Di Castro, S. Scarpino, S. Marchitti, et al., “Differential modulation of uncoupling protein 2 in kidneys of stroke-prone spontaneously hypertensive rats under high-salt/low-potassium diet,” Hypertension, vol. 61, pp. 534–541, 2013.
[68]  P. A. Gregory, A. G. Bert, E. L. Paterson et al., “The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1,” Nature Cell Biology, vol. 10, no. 5, pp. 593–601, 2008.
[69]  S. Muratsu-Ikeda, M. Nangaku, Y. Ikeda, et al., “Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells,” PloS ONE, vol. 7, Article ID e41462, 2012.
[70]  A. Magenta, C. Cencioni, P. Fasanaro et al., “MiR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition,” Cell Death and Differentiation, vol. 18, no. 10, pp. 1628–1639, 2011.
[71]  B. Mateescu, L. Batista, M. Cardon et al., “MiR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response,” Nature Medicine, vol. 17, no. 12, pp. 1627–1635, 2011.
[72]  W. A. Baseler, D. Thapa, R. Jagannathan, E. R. Dabkowski, T. L. Croston, and J. M. Hollander, “miR-141 as a regulator of the mitochondrial phosphate carrier (Slc25a3) in the type 1 diabetic heart,” American Journal of Physiology. Cell Physiology, vol. 303, pp. C1244–C1251, 2012.
[73]  Y. Lin, X. Liu, Y. Cheng, J. Yang, Y. Huo, and C. Zhang, “Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells,” Journal of Biological Chemistry, vol. 284, no. 12, pp. 7903–7913, 2009.
[74]  M. Weber, M. B. Baker, J. P. Moore, and C. D. Searles, “MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity,” Biochemical and Biophysical Research Communications, vol. 393, no. 4, pp. 643–648, 2010.
[75]  F. Fleissner, V. Jazbutyte, J. Fiedler et al., “Short communication: asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery disease through a MicroRNA-21-Dependent mechanism,” Circulation Research, vol. 107, no. 1, pp. 138–143, 2010.
[76]  F. Liu, Y.-L. Lou, J. Wu et al., “Upregulation of microRNA-210 regulates renal angiogenesis mediated by activation of VEGF signaling pathway under ischemia/perfusion injury in vivo and in vitro,” Kidney and Blood Pressure Research, vol. 35, no. 3, pp. 182–191, 2012.
[77]  S.-M. Park, A. B. Gaur, E. Lengyel, and M. E. Peter, “The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2,” Genes and Development, vol. 22, no. 7, pp. 894–907, 2008.
[78]  M. Korpal, E. S. Lee, G. Hu, and Y. Kang, “The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2,” Journal of Biological Chemistry, vol. 283, no. 22, pp. 14910–14914, 2008.
[79]  J. T. Park, M. Kato, H. Yuan, et al., “FOG2 protein down-regulation by transforming growth factor-beta1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy,” The Journal of Biological Chemistry, vol. 288, pp. 22469–22480, 2013.
[80]  J. Zhou, K.-C. Wang, W. Wu et al., “MicroRNA-21 targets peroxisome proliferators-activated receptor-α in an autoregulatory loop to modulate flow-induced endothelial inflammation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 25, pp. 10355–10360, 2011.
[81]  X. Zhong, A. C. Chung, H. Y. Chen, et al., “miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes,” Diabetologia, vol. 56, pp. 663–674, 2013.
[82]  Z. Zhang, H. Peng, J. Chen et al., “MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice,” FEBS Letters, vol. 583, no. 12, pp. 2009–2014, 2009.
[83]  A. C. K. Chung, Y. Dong, W. Yang, X. Zhong, R. Li, and H. Y. Lan, “Smad7 suppresses renal fibrosis via altering expression of TGF-β/Smad3-regulated microRNAs,” Molecular Therapy, vol. 21, pp. 388–398, 2013.
[84]  X. Zhong, A. C. K. Chung, H.-Y. Chen, X.-M. Meng, and H. Y. Lan, “Smad3-mediated upregulation of miR-21 promotes renal fibrosis,” Journal of the American Society of Nephrology, vol. 22, no. 9, pp. 1668–1681, 2011.
[85]  J. G. Godwin, X. Ge, K. Stephan, A. Jurisch, S. G. Tullius, and J. Iacomini, “Identification of a microRNA signature of renal ischemia reperfusion injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 32, pp. 14339–14344, 2010.
[86]  S. Saal and S. J. Harvey, “MicroRNAs and the kidney: coming of age,” Current Opinion in Nephrology and Hypertension, vol. 18, no. 4, pp. 317–323, 2009.
[87]  S. Y. Chan and J. Loscalzo, “MicroRNA-210: a unique and pleiotropic hypoxamir,” Cell Cycle, vol. 9, no. 6, pp. 1072–1083, 2010.
[88]  C. Devlin, S. Greco, F. Martelli, and M. Ivan, “MiR-210: more than a silent player in hypoxia,” IUBMB Life, vol. 63, no. 2, pp. 94–100, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133