全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Crystallographic and DFT Studies on Pyrrolo[1,2-c]imidazole Scaffolds

DOI: 10.1155/2014/369061

Full-Text   Cite this paper   Add to My Lib

Abstract:

The crystal structures of the compounds C15H14N4O2 (1) and C16H16N4O4 (2) are reported and analyzed by single crystal X-ray diffraction technique. Compounds (1) and (2) crystallized in monoclinic space group P21/c and Cc with four molecules in the unit cell, respectively. The unit cell parameters for compound (1) are = 11.4501(15) ?, = 9.7869(11) ?, = 12.3653(15) ?, β = 90.997(11)°, and Volume = 1385.5(3) ?3 and for compound (2) are = 13.865(2) ?, = 6.9538(8) ?, = 16.841(2) ?, β = 98.602(11)°, and Volume = 1605.4(4) ?3. In both compounds (1) and (2), the pyrrolidine ring adopts half-chair conformation. Moreover, both inter- and intramolecular N–H?O hydrogen bonds stabilize the crystal structure and play a crucial role in crystal packing. This intermolecular interaction alone constructs chain motif in both compounds. It is also supported by weak intermolecular π-π interaction which is essential for the stability of the crystal packing. Further, the Density Functional Theory (B3LYP) method with standard 6-31G basis set was used in the calculation and calculated geometrical parameter is correlated with the corresponding experimental data. The obtained HOMO and LUMO energies are in negative values indicating that the compounds are in stable state. 1. Introduction The five-membered heterocyclic pyrrolidine ring system commonly occurs in many natural products and these five members are leading components of alkaloids [1]. They are essential synthetic components of HIV reverse transcriptase enzyme and inhibitors of substance P neurotransmitters [2, 3]. Further, they also act as antibacterial and antiamnestic agents [4, 5]. The heterocyclic imidazole derivatives are also considered to be an important synthetic precursor in drug designing and discovery process [6, 7]. These imidazole derivatives have antitumor, antimicrobial, and anti-inflammatory activity and they also inhibit MAP kinase p38 protein [8]. Also, the novel Py-Im derivatives have been established as powerful partial agonists of the 1A adrenoceptor (GPCR known as adrenergic receptor) and have shown better response over the 1B, 1D, and 2A receptor subtypes [9]. The fused Py-Im derivative also inhibits the JNK (c-Jun-N-terminal kinase) pathway which is the fascinating drug target for several neurodegenerative disorders. In view of the growing biological importance of Py-Im derivatives, the single crystal X-ray diffraction studies on the compounds were carried out and analyzed. 2. Experimental 2.1. Synthesis Synthesis of

References

[1]  D. O'Hagan, “Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids,” Natural Product Reports, vol. 17, no. 5, pp. 435–446, 2000.
[2]  X. Wu, S. Toppet, F. Compernolle, and G. J. Hoornaert, “Generation of cyclopenta[c]piperidines and pyrrolo[3,4-c]piperidines—potential substance P antagonists—from adducts of cyclic dienophiles and 5-chloro-6-methyl-3-phenyl-2H-1,4-oxazin-2-one,” Tetrahedron, vol. 56, no. 34, pp. 6279–6290, 2000.
[3]  R. Tamazyan, H. Karapetyan, A. Martirisyan, V. Martirosyan, G. Harutyunyan, and S. Gasparyan, “1,2,5-substituted derivatives of 2-phenylpyrrolidine,” Acta Crystallographica C: Crystal Structure Communications, vol. 60, part 6, pp. o390–o392, 2004.
[4]  X. E. Hu, N. K. Kim, J. L. Gray, J. K. Almstead, W. L. Seibel, and B. Ledoussal, “Discovery of (3S)-amino-(4R)-ethylpiperidinyl quinolones as potent antibacterial agents with a broad spectrum of activity and activity against resistant pathogens,” Journal of Medicinal Chemistry, vol. 46, no. 17, pp. 3655–3661, 2003.
[5]  S. Thamotharan, V. Parthasarathi, P. Gupta, D. P. Jindal, P. Piplani, and A. Linden, “N-(2-naphthyloxymethylcarbonyl)pyrrolidine,” Acta Crystallographica E: Structure Reports Online, vol. 59, no. 9, pp. o1334–o1335, 2003.
[6]  J. Cheng, J. Xie, and X. Luo, “Synthesis and antiviral activity against Coxsackie virus B3 of some novel benzimidazole derivatives,” Bioorganic and Medicinal Chemistry Letters, vol. 15, no. 2, pp. 267–269, 2005.
[7]  A. T. Mavrova, K. K. Anichina, D. I. Vuchev et al., “Antihelminthic activity of some newly synthesized 5(6)-(un)substituted-1H-benzimidazol-2-ylthioacetylpiperazine derivatives,” European Journal of Medicinal Chemistry, vol. 41, no. 12, pp. 1412–1420, 2006.
[8]  S. Laufer and P. Koch, “Towards the improvement of the synthesis of novel 4(5)-aryl-5(4)-heteroaryl-2-thio-substituted imidazoles and their p38 MAP kinase inhibitory activity,” Organic and Biomolecular Chemistry, vol. 6, no. 3, pp. 437–439, 2008.
[9]  L. R. Roberts, P. V. Fish, R. Ian Storer, and G. A. Whitlock, “6,7-Dihydro-5H-pyrrolo[1,2-a] imidazoles as potent and selective α1A adrenoceptor partial agonists,” Bioorganic and Medicinal Chemistry Letters, vol. 19, no. 11, pp. 3113–3117, 2009.
[10]  B. Rajarathinam and G. Vasuki, “Diastereoselective multicomponent reaction in water: synthesis of 2-azapyrrolizidine alkaloid analogues,” Organic Letters, vol. 14, no. 20, pp. 5204–5206, 2012.
[11]  G. M. Sheldrick, “A short history of SHELX,” Acta Crystallographica A: Foundations of Crystallography, vol. 64, no. 1, pp. 112–122, 2007.
[12]  Oxford Diffraction CrysAlis CCD, CrysAlis RED and CrysAlis PRO, Oxford Diffraction, Yarnton, UK, 2009.
[13]  L. J. Farrugia, “ORTEP-3 for windows—a version of ORTEP-III with a graphical user interface (GUI),” Journal of Applied Crystallography, vol. 30, no. 5, p. 565, 1997.
[14]  A. L. Spek, “Structure validation in chemical crystallography,” Acta Crystallographica D: Biological Crystallography, vol. 65, part 2, pp. 148–155, 2009.
[15]  C. F. Macrae, P. R. Edgington, P. McCabe et al., “Mercury: visualization and analysis of crystal structures,” Journal of Applied Crystallography, vol. 39, no. 3, pp. 453–457, 2006.
[16]  F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor, “Tables of bond lengths determined by x-ray and neutron diffraction, part 1: bond lengths in organic compounds,” Journal of the Chemical Society, Perkin Transactions 2, no. 12, pp. S1–S19, 1987.
[17]  M. W. Schmidt, K. K. Baldridge, J. A. Boatz et al., “General atomic and molecular electronic structure system,” Journal of Computational Chemistry, vol. 14, no. 11, pp. 1347–1363, 1993.
[18]  D. Cremer and J. A. Pople, “A general definition of ring puckering coordinates,” Journal of the American Chemical Society, vol. 97, no. 6, pp. 1354–1358, 1975.
[19]  J. Bernstein, R. E. Davis, L. Shimoni, and N. Chang, “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angewandte Chemie (International Edition), vol. 34, no. 15, pp. 1555–1573, 1995.
[20]  X. T. S. Xavier.t.s and I. H. Joe, “FT-IR, Raman and DFT study of 2-amino-5-fluorobenzoic acid and its biological activity with other halogen (Cl, Br) substitution,” Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, vol. 79, no. 2, pp. 332–337, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133