In the present study, ciprofloxacin-salicylic acid molecular salt has been synthesized and preliminarily characterized by FT-IR spectroscopy. The single crystal X-ray diffraction (SCXRD) reveals the proton transfer from carboxylic acid group of salicylic acid to piperazine moiety in ciprofloxacin confirming the formation of new molecular salt. The molecular packing of the molecular salt is mainly supported by N+–H?O?, O–H?O, C–H?F, C–H? , and interactions. The 3D Hirshfeld surfaces and the associated 2D fingerprint plots were investigated for intermolecular hydrogen bonding interactions. 1. Introduction In the pharmaceutical industry salt formation is a widely used method to modulate the physicochemical properties of active pharmaceutical ingredients (APIs) [1]. Salts have been shown to modulate the solubility and bioavailability of APIs [2–4]. An active pharmaceutical salt is a combination of an API with the GRAS (generally regarded as safe by US FDA) listed coformer [5]. A crystal engineering approach in the selection of acid or base for a given drug molecule to make salts or cocrystals is reported in the literature [6, 7]. Hydrochloride salts are the most preferred method to improve the solubility and stability of APIs [1], but hygroscopicity is a drawback for the hydrochloride salts [8]. Ciprofloxacin (CPF) is a synthetic antibacterial fluoroquinolone related to nalidixic acid having a fluorine atom and piperazine ring at the positions 6 and 7 of quinolone-3-carboxylic acid. It is one of the most active fluoroquinolones with a wide spectrum of biological activity, which is active against both Gram-positive [9] and Gram-negative bacteria [10]. In recent years, CPF has drawn great interest from crystal engineers, due to its tendency to form robust supramolecular architectures with compounds having carboxylic acid functional groups, and also various salts of ciprofloxacin are reported in [11–16]. Our endeavours in the present study are synthesis of CPF molecular salt with GRAS listed salicylic acid, determination of crystal structure by SCXRD, and investigation of various intra- and intermolecular hydrogen bonding by Hirshfeld surface analysis. The molecular structures of CPF and SA are shown in Figure 1. Figure 1: Chemical diagrams of ciprofloxacin (a) and salicylic acid (b). 2. Materials and Methods 2.1. Materials Ciprofloxacin (purity 98%) and salicylic acid (purity 99%) were purchased from Alfa Aesar, India. Methanol with HPLC grade purity was obtained from Rankem,, India, and used without further purification. Distilled water was used for
References
[1]
M. Pudipeddi, A. T. M. Serajuddin, D. J. W. Grant, and P. H. Stahl, “Solubility and dissolution of weak acids, bases, and salts,” in Handbook of Pharmaceutical Salts, Properties, Selection and Use, P. H. Stahl and C. G. Wermuth, Eds., pp. 19–40, Wiley-VCH, Weinheim, Germany, 1st edition, 2002.
[2]
S. L. Childs, L. J. Chyall, J. T. Dunlap, V. N. Smolenskaya, B. C. Stahly, and G. P. Stahly, “Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids,” Journal of the American Chemical Society, vol. 126, no. 41, pp. 13335–13342, 2004.
[3]
S. N. Black, E. A. Collier, R. J. Davey, and R. J. Roberts, “Structure, solubility, screening, and synthesis of molecular salts,” Journal of Pharmaceutical Sciences, vol. 96, no. 5, pp. 1053–1068, 2007.
[4]
R. Banerjee, P. M. Bhatt, N. V. Ravindra, and G. R. Desiraju, “Saccharin salts of active pharmaceutical ingredients, their crystal structures, and increased water solubilities,” Crystal Growth and Design, vol. 5, no. 6, pp. 2299–2309, 2005.
[5]
G. Patrick Stahly, “A survey of cocrystals reported prior to 2000,” Crystal Growth and Design, vol. 9, no. 10, pp. 4212–4229, 2009.
[6]
?. Almarsson and M. J. Zaworotko, “Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines?” Chemical Communications, vol. 10, no. 17, pp. 1889–1896, 2004.
[7]
N. Blagden, M. de Matas, P. T. Gavan, and P. York, “Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates,” Advanced Drug Delivery Reviews, vol. 59, no. 7, pp. 617–630, 2007.
[8]
S. M. Berge, L. D. Bighley, and D. C. Monkhouse, “Pharmaceutical salts,” Journal of Pharmaceutical Sciences, vol. 66, no. 1, pp. 1–19, 1977.
[9]
F. H. Kayser and J. Novak, “In vitro activity of ciprofloxacin against gram-positive bacteria. An overview,” American Journal of Medicine, vol. 82, no. 4 A, pp. 33–39, 1987.
[10]
J. E. Rudin, C. W. Norden, and E. M. Shinners, “In vitro activity of ciprofloxacin against aerobic gram-negative bacteria,” Antimicrobial Agents and Chemotherapy, vol. 26, no. 4, pp. 597–598, 1984.
[11]
J. S. Reddy, S. V. Ganesh, R. Nagalapalli et al., “Fluoroquinolone salts with carboxylic acids,” Journal of Pharmaceutical Sciences, vol. 100, no. 8, pp. 3160–3176, 2011.
[12]
I. Turel and A. Golobi?, “Crystal structure of ciprofloxacin hydrochloride 1.34-hydrate,” Analytical Sciences, vol. 19, no. 2, pp. 329–330, 2003.
[13]
B. Lou, D. Bostr?m, and S. P. Velaga, “Monohydrous dihydrogen phosphate salts of norfloxacin and ciprofloxacin,” Acta Crystallographica Section C: Crystal Structure Communications, vol. 63, no. 12, pp. o731–o733, 2007.
[14]
M. D. Prasanna and T. N. Guru Row, “Hydrogen bonded networks in hydrophilic channels: crystal structure of hydrated ciprofloxacin lactate and comparison with structurally similar compounds,” Journal of Molecular Structure, vol. 559, no. 1–3, pp. 255–261, 2001.
[15]
X. Li, Y. Hu, Y. Gao, G. G. Z. Zhang, and R. F. Henry, “A methanol hemisolvate of ciprofloxacin,” Acta Crystallographica Section E: Structure Reports Online, vol. 62, no. 12, pp. o5803–o5805, 2006.
[16]
I. Turel, P. Bukovec, and M. Quirós, “Crystal structure of ciprofloxacin hexahydrate and its characterization,” International Journal of Pharmaceutics, vol. 152, no. 1, pp. 59–65, 1997.
[17]
Rigaku/MSC and Rigaku Corporation, CrystalClear (Version SM-1. 4. 0 B2) and CrystalStructure (Version 3. 8). Single Crystal Structure Analysis Software, Rigaku/MSC, Tokyo, Japan, 2006.
[18]
A. Altomare, G. Cascarano, C. Giacovazzo et al., “SIR92—a program for automatic solution of crystal structures by direct methods,” Journal of Applied Crystallography, vol. 27, no. 3, p. 435, 1994.
[19]
P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, and D. J. Watkin, “CRYSTALS version 12: software for guided crystal structure analysis,” Journal of Applied Crystallography, vol. 36, p. 1487, 2003.
[20]
P. McArdle, “ORTEX—an interactive version of ORTEP for use on a PC,” Journal of Applied Crystallography, vol. 26, p. 752, 1993.
[21]
S. K. Wolff, D. J. Grimwood, J. J. McKinnon, D. Jayatilaka, and M. A. Spackman, CrystalExplorer, Version 1. 5, University of Western Australia, Perth, Australia, 2007.
[22]
R. Chada, A. Saini, S. Khullar, D. S. Jain, S. K. Mandal, and T. N. Guru Row, “Crystal structures and physicochemical properties of four new lamotrigine multicomponent forms,” Crystal Growth and Design, vol. 13, pp. 858–870, 2013.
[23]
S. Basavoju, D. Bostr?m, and S. P. Velaga, “Pharmaceutical cocrystal and salts of norfloxacin,” Crystal Growth and Design, vol. 6, no. 12, pp. 2699–2708, 2006.
[24]
M. A. Spackman and J. J. McKinnon, “Fingerprinting intermolecular interactions in molecular crystals,” CrystEngComm, vol. 4, pp. 378–392, 2002.