全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Exploiting Spatial and Frequency Diversity in Spatially Correlated MU-MIMO Downlink Channels

DOI: 10.1155/2012/414796

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effect of self-interference due to the increase of spatial correlation in a MIMO channel has become one of the limiting factors towards the implementation of future network downlink transmissions. This paper aims to reduce the effect of self-interference in a downlink multiuser- (MU-) MIMO transmission by exploiting the available spatial and frequency diversity. The subcarrier allocation scheme can exploit the frequency diversity to determine the self-interference from the ESINR metric, while the spatial diversity can be exploited by introducing the partial feedback scheme, which offers knowledge of the channel condition to the base station and further reduces the effect before the allocation process takes place. The results have shown that the proposed downlink transmission scheme offers robust bit error rate (BER) performance, even when simulated in a fully correlated channel, without imposing higher feedback requirements on the base controller. 1. Introduction Dynamic resource assignment from the Orthogonal Frequency Division Multiple Access (OFDMA) in combination with multiplicative increase in throughput from Multiple-Input Multiple-Output (MIMO) technology offers improved spectral diversity in a wireless downlink transmission. The result of this combination is able to provide a highly efficient and low latency with enhanced spectrum flexibility radio interface, as can be seen from the downlink implementation of a Long Term Evolution (LTE) network [1]. In addition, the LTE network benefits from MU-MIMO, a multiuser diversity technique that exploits the spatial diversity from the channel knowledge at the transmitter, that is, channel state information (CSI), to improve the performance gain. However, accurate CSI is obtained at the expense of massive feedback overhead. A partial feedback scheme, which is based on a quantized discrete Fourier transform (DFT), is considered in this paper. Instead of feeding back the full CSI, mobile users update the E-UTRAN Node B (eNodeB) with the preferred precoding matrix based on the channel quality indicator (CQI). The implementation of the full feedback scheme comes at the expense of CSI; therefore, it requires an enormous amount of feedback to the eNodeB. This scenario is not practical for the downlink implementation because eNodeB requires a higher level of computational overhead to compute the channel matrix. This situation worsens when the channel is severely impaired by channel imperfection, such as spatial correlation, which is also described by Gesbert et al. [2] as an effect of self-interference. This

References

[1]  3GPP Technical Specification 36.213, “Physical layer procedures (Release 8),” http://www.3gpp.org/.
[2]  D. Gesbert, M. Shafi, D. S. Shiu, P. J. Smith, and A. Naguib, “From theory to practice: an overview of MIMO space-time coded wireless systems,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 3, pp. 281–302, 2003.
[3]  H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of the Gaussian multiple-input multiple-output broadcast channel,” IEEE Transactions on Information Theory, vol. 52, no. 9, pp. 3936–3964, 2006.
[4]  S. Sanayei and A. Nosratinia, “Exploiting multiuser diversity with only 1-bit feedback,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC '05), pp. 978–983, March 2005.
[5]  D. Gesbert, M. Kountouris, R. W. Heath, C. Chan-Byoung Chae, and T. S?lzer, “Shifting the MIMO paradigm,” IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 36–46, 2007.
[6]  D. J. Love, R. W. Heath, V. K. N. Lau, D. Gesbert, B. D. Rao, and M. Andrews, “An overview of limited feedback in wireless communication systems,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 8, pp. 1341–1365, 2008.
[7]  H. Rohling and R. Grünheid, “Cross layer considerations for an adaptive OFDM-based wireless communication system,” Wireless Personal Communications, vol. 32, no. 1, pp. 43–57, 2005.
[8]  Philip RI-062483, “Comparison between MU-MIMO codebook-based channel reporting techniques for L TE downlink,” 3GPP TSG RAN WG I Meeting #46bis, october 2006.
[9]  D. Yang, L. L. Yang, and L. Hanzo, “DFT-based beamforming weight-vector codebook design for spatially correlated channels in the unitary precoding aided multiuser downlink,” in Proceedings of the IEEE International Conference on Communications (ICC '10), pp. 1–5, May 2010.
[10]  B. Mondal and R. W. Heath, “Channel adaptive quantization for limited feedback MIMO beamforming systems,” IEEE Transactions on Signal Processing, vol. 54, no. 12, pp. 4717–4729, 2006.
[11]  S. J. Kim, H. J. Kim, and K. B. Lee, “Multiuser MIMO Scheme for Enhanced 3GPP HSDPA,” in Proceedigs of the 11th European Wireless Conference, February 2005.
[12]  J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 2, pp. 171–178, 2003.
[13]  J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen, “A stochastic MIMO radio channel model with experimental validation,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 6, pp. 1211–1226, 2002.
[14]  K. C. Beh, C. Han, M. Nicolaou, S. Armour, and A. Doufexi, “Power efficient MIMO techniques for 3GPP LTE and beyond,” in Proceedings of the IEEE 70th Vehicular Technology Conference Fall (VTC '09), pp. 1–5, September 2009.
[15]  J. Zhu, J. Liu, X. She, and L. Chen, “Investigation on precoding techniques in E-UTRA and proposed adaptive precoding scheme for MIMO systems,” in Proceedings of the 14th Asia-Pacific Conference on Communications (APCC '08), pp. 1–5, October 2008.
[16]  N. Ravindran and N. Jindal, “Limited feedback-based block diagonalization for the MIMO broadcast channel,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 8, pp. 1473–1482, 2008.
[17]  K. C. Beh, Resource allocation for the long term evolution (LTE) of 3G [Ph.D. thesis], University of Bristol, Bristol, UK, 2009.
[18]  E. Y. Kim and J. Chun, “Random beamforming in MIMO systems exploiting efficient multiuser diversity,” in Proceedings of the IEEE 61st Vehicular Technology Conference (VTC '05), vol. 1, pp. 202–205, June 2005.
[19]  D. Tse and P. Viswanath, Fundamental of Wireless Communication, Cambridge University Press, New York, NY, USA, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133