Magnetic resonance imaging (MRI) segmentation is a complex issue. This paper proposes a new method for estimating the right number of segments and automatic segmentation of human normal and abnormal MR brain images. The purpose of automatic diagnosis of the segments is to find the number of divided image areas of an image according to its entropy and with correctly diagnose of the segment of an image also increased the precision of segmentation. Regarding the fact that guessing the number of image segments and the center of segments automatically requires algorithm test many states in order to solve this problem and to have a high accuracy, we used a combination of the genetic algorithm and the fuzzy c-means (FCM) method. In this method, it has been tried to change the FCM method as a fitness function for combination of it in genetic algorithm to do the image segmentation more accurately. Our experiment shows that the proposed method has a significant improvement in the accuracy of image segmentation in comparison to similar methods. 1. Introduction Image segmentation is one of the difficult issues in the field of image processing. Image segmentation is the process of assigning a label to every pixel in an image so that pixels with the same label share certain visual characteristics. Many applications such as object identification, feature extraction, and object position identifications and classification require accurate image segmentation. Several methods of medical image segmentation have been proposed, such as edge based, region based, or a combination of both. The purpose of medical image segmentation is to provide a more meaningful image which can be more easily understood and analyzed. The edge-based methods use edge information in an image to determine the boundaries of objects and, hence, to form closed regions that determine different objects in an image. In some image segmentation methods, this method has been consistently used with the edge of the area for segmenting magnetic resonance imaging (MRI). Chun and Yang performed image segmentation according to the edge information [1]. In addition to edge information, they made use of a similarity measure which was obtained as the median pixel variance parameters. The method used a fuzzy validity function as well as genetic algorithms and tried to find limit and suitable search space for image segmentation. Finding the main edges and removing redundant edges were the main issues in this method. Moreover, atlas-based segmentation methods were successfully employed for different applications. For
References
[1]
D. N. Chun and H. S. Yang, “Robust image segmentation using genetic algorithm with a fuzzy measure,” Pattern Recognition, vol. 29, no. 7, pp. 1195–1211, 1996.
[2]
R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. Rueckert, and A. Hammers, “Automatic anatomical brain MRI segmentation combining label propagation and decision fusion,” NeuroImage, vol. 33, no. 1, pp. 115–126, 2006.
[3]
Z. M. Wang, Y. C. Soh, Q. Song, and K. Sim, “Adaptive spatial information-theoretic clustering for image segmentation,” Pattern Recognition, vol. 42, no. 9, pp. 2029–2044, 2009.
[4]
S. R. Kannan, S. Ramathilagam, R. Devi, and E. Hines, “Strong fuzzy c-means in medical image data analysis,” Journal of Systems and Software, vol. 85, no. 11, pp. 2425–2438, 2012.
[5]
S. R. Kannan, S. Ramathilagam, R. Devi, and A. Sathya, “Robust kernel FCM in segmentation of breast medical images,” Expert Systems with Applications, vol. 38, no. 4, pp. 4382–4389, 2011.
[6]
S. R. Kannan, A. Sathya, S. Ramathilagam, and R. Devi, “Novel segmentation algorithm in segmenting medical images,” Journal of Systems and Software, vol. 83, no. 12, pp. 2487–2495, 2010.
[7]
B. Caldairou, N. Passat, P. A. Habas, C. Studholme, and F. Rousseau, “A non-local fuzzy segmentation method: application to brain MRI,” Pattern Recognition, vol. 44, no. 9, pp. 1916–1927, 2011.
[8]
Y. He, M. Y. Hussaini, J. Ma, B. Shafei, and G. Steidl, “A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data,” Pattern Recognition, vol. 45, no. 9, pp. 3463–3471, 2012.
[9]
Z.-X. Ji, Q.-S. Sun, and D. S. Xia, “A framework with modified fast FCM for brain MR images segmentation,” Pattern Recognition, vol. 44, no. 5, pp. 999–1013, 2011.
[10]
Z.-X. Ji, Q.-S. Sun, and D. S. Xia, “A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image,” Computerized Medical Imaging and Graphics, vol. 35, no. 5, pp. 383–397, 2011.
[11]
Z. Ji, Q. Sun, Y. Xia, Q. Chen, D. Xia, and D. Feng, “Generalized rough fuzzy c-means algorithm for brain MR image segmentation,” Computer Methods and Programs in Biomedicine, vol. 108, no. 2, pp. 644–655, 2011.
[12]
J. Wang, J. Kong, Y. Lu, M. Qi, and B. Zhang, “A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints,” Computerized Medical Imaging and Graphics, vol. 32, no. 8, pp. 685–698, 2008.
[13]
K. Sikka, N. Sinha, P. K. Singh, and A. K. Mishra, “A fully automated algorithm under modified FCM framework for improved brain MR image segmentation,” Magnetic Resonance Imaging, vol. 27, no. 7, pp. 994–1004, 2009.
[14]
C.-C. Lai and C.-Y. Chang, “A hierarchical evolutionary algorithm for automatic medical image segmentation,” Expert Systems with Applications, vol. 36, no. 1, pp. 248–259, 2009.
[15]
J. Y. Yeh and J. C. Fu, “A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI,” Expert Systems with Applications, vol. 34, no. 2, pp. 1285–1295, 2008.
[16]
J. C. Fu, C. C. Chen, J. W. Chai, S. T. C. Wong, and I. C. Li, “Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging,” Computerized Medical Imaging and Graphics, vol. 34, no. 4, pp. 308–320, 2010.
[17]
H.-C. Chen and W.-J. Wang, “Efficient impulse noise reduction via local directional gradients and fuzzy logic,” Fuzzy Sets and Systems, vol. 160, no. 13, pp. 1841–1857, 2009.
[18]
W.-B. Tao, J.-W. Tian, and J. Liu, “Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm,” Pattern Recognition Letters, vol. 24, no. 16, pp. 3069–3078, 2003.
[19]
A. R. Van Erkel and P. M. T. Pattynama, “Receiver operating characteristic (ROC) analysis: basic principles and applications in radiology,” European Journal of Radiology, vol. 27, no. 2, pp. 88–94, 1998.
[20]
J. K. Udupa, V. R. LeBlanc, Y. Zhuge et al., “A framework for evaluating image segmentation algorithms,” Computerized Medical Imaging and Graphics, vol. 30, no. 2, pp. 75–87, 2006.