全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Solution of Axisymmetric Potential Problem in Oblate Spheroid Using the Exodus Method

DOI: 10.1155/2014/126905

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents the use of Exodus method for computing potential distribution within a conducting oblate spheroidal system. An explicit finite difference method for solving Laplace’s equation in oblate spheroidal coordinate systems for an axially symmetric geometry was developed. This was used to determine the transition probabilities for the Exodus method. A strategy was developed to overcome the singularity problems encountered in the oblate spheroid pole regions. The potential computation results obtained correlate with those obtained by exact solution and explicit finite difference methods. 1. Introduction An oblate spheroid is the surface generated by the rotation of an ellipse about its minor axis, and depending upon the ellipse’s eccentricity, the spheroid will be flattened about the minor axis [1]. An oblate spheroidal shell, for instance, is considered as a continuous system constructed from two spherical shell caps by matching the continuous boundary conditions [2]. Oblate and prolate spheroidal coordinates are widely used in many fields of science and engineering, such as potential theory, fluid mechanics, heat and mass transfer, thermal stress, and elastic inclusions. For example, oblate and prolate spheroids being surfaces of revolution can be more easily conformed to most districts of human body (e.g., extremities) which is of interest for dedicated MRI systems [3]. Oblate spheroidal coordinates are the natural choice for the translation of any ellipsoid parallel to a principal axis [4]. There is a more recent improvement in the lightning ground tracking systems based on the time-of-arrival (TOA) technique because of the refinement in the mathematics to more accurately accommodate the oblate shape of the earth spheroid. Approximating the earth as a perfect sphere affects not only the accuracy of time clock offset calculations, but also the accuracy of stroke coordinate computation given receiver time differences. Oblate solution mathematics can provide a substantial systematic error reduction of up to 50% percent [5]. In this paper, Exodus method is used to compute potential distribution inside conducting oblate spheroidal shells maintained at two potentials. This work is a continuation of our previous work in which a fixed random walk Monte Carlo method (MCM) was used for numerical computation of potential distribution with two conducting oblate spheroidal shells maintained at two potentials [6]. An explicit Neumann boundary condition was imposed at the pole regions of the oblate spheroid to treat the presence of singularities in

References

[1]  W. L. Gates, “Derivation of the equations of atmospheric motion in Oblate Spheroidal Coordinates,” Journal of the Atmospheric Sciences, vol. 61, pp. 2478–2487, 2004.
[2]  A. M. Al-Jumaily and F. M. Najim, “An approximation to the vibrations of oblate spheroidal shells,” Journal of Sound and Vibration, vol. 204, no. 4, pp. 561–574, 1997.
[3]  V. Punzo, S. Besio, S. Pittaluga, and A. Trequattrini, “Solution of Laplace equation on non axially symmetrical volumes,” IEEE Transactions on Applied Superconductivity, vol. 16, no. 2, pp. 1815–1818, 2006.
[4]  R. F. Tuttle and S. K. Loyalka, “Gravitational collision efficiency of nonspherical aerosols II: motion of an oblate spheroid in a viscous fluid,” Nuclear Technology, vol. 69, no. 3, pp. 327–336, 1985.
[5]  P. W. Casper and R. B. Bent, “The effect of the earth's oblate spheroid shape on the accuracy of a time-of-arrival lightning ground strike locating system,” in Proceedings of the International Aerospace and Ground Conference on Lightning and Static Electricity, vol. 2, pp. 81.1–81.8, The National Aeronautics and Space Administration, The National Interagency Coordination Group (NICG), and Florida Institute, 1991.
[6]  O. D. Momoh, M. N. O. Sadiku, and S. M. Musa, “A fixed random walk Monte Carlo computation of potential inside two conducting oblate spheroidal shells,” in Proceedings of the IEEE Southeastcon, pp. 196–200, Nashville, Tenn, USA, March 2011.
[7]  O. D. Momoh, M. N. O. Sadiku, and C. M. Akujuobi, “Solution of axisymmetric potential problem in spherical coordinates using Exodus method,” in Proceedings of the PIERS Conference, pp. 1110–1114, Cambridge, Mass, USA, July 2010.
[8]  M. N. O. Sadiku, Numerical Techniques in Electromagnetics with MATLAB, CRC Press, Boca Raton, Fla, USA, 3rd edition, 2009.
[9]  R. S. Alassar and H. M. Badr, “Analytical solution of oscillating inviscid flow over oblate spheroids with spheres and flat disks as special cases,” Ocean Engineering, vol. 24, no. 3, pp. 217–225, 1997.
[10]  O. D. Momoh, M. N. O. Sadiku, and C. M. Akujuobi, “Potential distribution computation in conducting prolate spheroidal shells using the exodus method,” IEEE Transactions on Magnetics, vol. 47, no. 5, pp. 1426–1429, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133