This paper proposes a computational approach to debris flow model. In recent years, the theoretical activity on the classical Herschel-Bulkley model (1926) has been very intense, but it was in the early 80s that the opportunity to explore the computational model has enabled considerable progress in identifying the subclasses of applicability of different sets of boundary conditions and their approximations. Here we investigate analytically the problem of the simulation of uniform motion for heterogeneous debris flow laterally confined taking into account mainly the geological data and methodological suggestions derived from simulation with cellular automata and grid systems, in order to propose a computational scheme able to operate a compromise between “global” predictive capacities and computing effort. 1. Introduction The mobility of granular clusters in the upper part of the mountain basins may cause a sliding similar to fluids currents. Obviously this happens in particular conditions of slope and if we have a particular solid-fluid concentration ratio. Inside the mixture that moves, there are several resistances. Despite the strong nonstationarity of currents, it is important to study the conditions of uniform or nearly uniform motion [1]. In fact, the phenomenon is so complex as to require the study of the problem in the simplest possible terms. Moreover, the equation of motion obtained in conditions of uniformity is also used in the simulations of variable motion and the uniform motion is an asymptotic condition where the natural currents tend to it in the absence of geometry variations of the contour and of supply conditions. In the case of currents in equilibrium with the bottom it was observed that the velocity profile along the wall has a zero gradient at the bottom. The observations in correspondence with the free surface as well as the first velocity measurements made within the mixture showed that the transverse velocity profile exhibits a maximum at the centerline of the section and minimum values in correspondence with the side walls. Concentration measurements have been obtained by some authors for the case of granular mixtures devoid of fine material, in correspondence with the side walls of the channel. These measurements have shown that the concentration increases with the depth of the current, with a roughly linear trend, reaching a maximum value equal to the concentration at the bottom. In [2] the authors study the motion of a solid-liquid mixture under conditions of uniformity and, above all, they analyze the effect of the walls
References
[1]
T. R. H. Davies, “Large debris flows: a macro-viscous phenomenon,” Acta Mechanica, vol. 63, no. 1–4, pp. 161–178, 1986.
[2]
R. Martino and M. N. Papa, “Simulazione del moto uniforme per una corrente detritica eterogenea in presenza di pareti laterali,” in Proceedings of the 30th Convegno di Idraulica e Costruzioni Idrauliche (IDRA '06), 2006.
[3]
M. Jakob and O. Hungr, Debris-Flow Hazards and Related Phenomena, Springer, 2005.
[4]
A. Armanini, H. Capart, L. Fraccarollo, and M. Larcher, “Rheological stratification in experimental free-surface flows of granular-liquid mixtures,” Journal of Fluid Mechanics, vol. 532, pp. 269–319, 2005.
[5]
A. Armanini, L. Fraccarollo, L. Guarino, R. Martino, and Y. Bin, “Experimental analysis of the general features of uniform flows over a loose bed,” in Proceedings of the 2nd International Conference on Debris Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Taipei, Taiwan, August 2000.
[6]
R. Martino, “Experimental analysis on the rheological properties of a debris-flow deposit,” in Proceedings of the 3rd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Davose, Switzerland, 2003.
[7]
R. Martino and M. N. Papa, “Effetto delle pareti nelle correnti detritiche: primi risultati,” in Proceedings of the 29th Convegno Nazionale di Idraulica e Costruzioni Idrauliche, Trento, Italy, 2004.
[8]
R. Martino, C. Sabatino, and L. Taglialatela, “An experimental analysis on the rheology of a granular debris flow, part I: collisional stresses,” in Proceedings of the 29th of International Association of Hydraulic Engineering and Research Congress (IAHR '01), Beijing, China, September 2001.
[9]
T. C. Papanastasiou, “Flows of materials with yield,” Journal of Rheology, vol. 31, no. 5, pp. 385–404, 1987.
[10]
T. Takahashi, H. Nakagawa, and Y. Satofuka, “Newtonian fluid model for viscous debris-flow,” in Debris Flow Hazard Mitigation: Mechanics, Prediction, and Assessment, Balkema, 2000.
[11]
Z. Wan and Z. Wang, Hyperconcentrated Flow, Balkema, Rotterdam, The Netherlands, 1994.
[12]
K. X. Whipple, “Open-channel flow of Bingham fluids: applications in debris-flow research,” Journal of Geology, vol. 105, no. 2, pp. 243–262, 1997.
[13]
G. Iovine, S. Di Gregorio, and V. Lupiano, “Debris-flow susceptibility assessment through cellular automata modeling: an example from 15-16 December 1999 disaster at Cervinara and San Martino Valle Caudina (Campania, southern Italy),” Natural Hazards and Earth System Science, vol. 3, no. 5, pp. 457–468, 2003.
[14]
Y. V. Vassilevski, K. D. Nikitin, M. A. Olshanskii, and K. M. Terekhov, “CFD technology for 3D simulation of large-scale hydrodynamic events and disasters,” Russian Journal of Numerical Analysis and Mathematical Modelling, vol. 27, no. 4, pp. 399–412, 2012.
[15]
M. Bercovier and M. Engleman, “A finite element method for incompressible non-Newtonian flows,” Journal Computational Physic, vol. 313, pp. 313–326, 1980.