全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Porosity Distribution in Composite Structures with Infrared Thermography

DOI: 10.1155/2013/140127

Full-Text   Cite this paper   Add to My Lib

Abstract:

Composite structures are increasingly used in the transport industry especially in the aeronautical sector thanks to their favorable strength-to-weight ratio with respect to metals. However, this is true if the final part is defects free and complies with quality requirements. A main weakness in composites is porosity, which is likely to be introduced during manufacturing processes and which may knock down the material characteristics affecting its performance in service. Porosity plays a key role in sandwich structures, which involve novel metal foams as core, since the foam performance strongly depends on size and distribution of pores. The determination of porosity is mostly attained by destructive methods, which supply only a general indication linked to the production part number. Conversely, composites may entail local significant variation of porosity, which may be discovered only with effective nondestructive techniques. The attention of the present work is focused on the possibility to use infrared thermography to get information about the amount and distribution of porosity. In particular, two techniques: flash thermography and lock-in thermography are used to comply with requirements of both monolithic composites and metal foams. 1. Introduction Composite structures are increasingly used in the transport industry especially in the construction of aircraft [1] thanks to their favorable strength-to-weight ratio with respect to metals. Adversely, one of the main problems is related to their intrinsic inhomogeneous structure and to defects that can be inadvertently induced during their manufacture. The mostly used composites include a polymeric matrix reinforced with either carbon, or glass fibers, which are generally referred to as fiber reinforced polymers (FRPs). Generally, plies of fibers impregnated with resin are overlaid owing to a fixed stacking sequence and cured in autoclave. The autoclave cycle involves the combined effects of temperature and pressure. Temperature is needed to activate and to control the chemical reactions in the resin, while pressure may squeeze off the resin in excess to consolidate the stacked plies and to minimize the amount of entrapped gas between the plies and within the resin [2]. In particular, setting up the vacuum pressure and maintaining it for a fixed interval have been individuated as critical parameters to be carefully monitored [3, 4] to avoid undesired formation of voids in the laminate. In fact, the presence of porosity can reduce the interlaminar shear strength causing delamination (interlamina

References

[1]  A. A. Baker, S. Dutton, and D. Kelly, Composite Materials for Aircraft Structures, AIAA Education Series, 2nd edition, 2004.
[2]  A. C. Loos and G. S. Springer, “Calculation of cure process variables during cure of graphite-epoxy composites,” in Composite Materials, Quality Assurance and Processing, C. E. Brownin, Ed., vol. 797 of ASTM STP, pp. 110–118, 1983.
[3]  L. Liu, B. M. Zhang, D. F. Wang, and Z. J. Wu, “Effects of cure cycles on void content and mechanical properties of composite laminates,” Composite Structures, vol. 73, no. 3, pp. 303–309, 2006.
[4]  F. Y. C. Boey and S. W. Lye, “Void reduction in autoclave processing of thermoset composites: part 1: high pressure effects on void reduction,” Composites, vol. 23, no. 4, pp. 261–265, 1992.
[5]  E. A. Birt and R. A. Smith, “A review of NDE methods for porosity measurement in fibre-reinforced polymer composites,” Insight, vol. 46, no. 11, pp. 681–686, 2004.
[6]  J. Schuller and R. Oster, “Classification of porosity by ultrasonic in carbon fibre helicopter structures based on micro computed tomography,” in Proceedings of the European Conference on Nondestructive Testing, Berlin, Germany, September 2006.
[7]  J.-W. Park, D. J. Kim, K.-H. Im et al., “Ultrasonic influence of porosity level on CFRP Composite laminates using rayleigh probe waves,” Acta Mechanica Solida Sinica, vol. 21, no. 4, pp. 298–307, 2008.
[8]  L. Lin, M. Luo, H. T. Tian, X. M. Li, and G. P. Guo, “Experimental investigation on porosity of carbon fibre-reinforced composite using ultrasonic attenuation coefficient,” in Proceedings of the World Conference on Nondestructive Testing, Shanghai, China, October 2008.
[9]  I. M. Daniel, S. C. Wooh, and I. Komsky, “Quantitative porosity characterization of composite materials by means of ultrasonic attenuation measurements,” Journal of Nondestructive Evaluation, vol. 11, no. 1, pp. 1–8, 1992.
[10]  EN 2564. Carbon fibre laminates—Determination of the fibre-, resin- and void contents, 1998.
[11]  G. Hendorfer, G. Mayr, G. Zauner, M. Haslhofer, and R. Pree, “Quantitative determination of porosity by active thermography,” vol. 26, pp. 702–708.
[12]  J. Kastner, B. Plank, D. Salaberger, and J. Sekelja, “Defect and porosity determination of fibre reinforced polymers by X-ray computed tomography,” in Proceedings of the 2nd International Symposium on NDT in Aerospace, Hamburg, Germany, November 2010.
[13]  G. Mayr and G. Handorfer, “Porosity Determination by pulsed Thermography in reflection mode,” in Proceedings of the 10th International Conference on Quantitative InfraRed Thermography, Quebec, Canada, July, 2010.
[14]  J. Banhart, “Manufacture, characterisation and application of cellular metals and metal foams,” Progress in Materials Science, vol. 46, no. 6, pp. 559–632, 2001.
[15]  D. T. Queheillalt, D. J. Sypeck, and H. N. G. Wadley, “Ultrasonic characterization of cellular metal structures,” Materials Science and Engineering A, vol. 323, no. 1-2, pp. 138–147, 2002.
[16]  L. P. Lefebvre, A. Blouin, S. M. Rochon, and M. N. Bureau, “Elastic response of titanium foams during compression tests and using laser-ultrasonic probing,” Advanced Engineering Materials, vol. 8, no. 9, pp. 841–846, 2006.
[17]  G. M. Carlomagno, L. Carrino, M. Durante, S. Franchitti, and C. Meola, “Density evaluation in metal foams with lock-in thermography,” in Proceedings of the 10th A.I.TE.M. Conference Enhancing the Science of Manufacturing, pp. 1–10, 2011.
[18]  C. Meola and G. M. Carlomagno, “Infrared thermography in non-destructive inspection: theory and practice,” in Recent Advances in Non Destructive Inspection, C. Meola, Ed., pp. 89–123, Nova Science, New York, NY, USA, 2010.
[19]  C. Meola and C. Toscano, “NonDestructive evaluation of carbon fiber reinforced polymers with ultrasonics and infrared thermography: an overview on historical steps and patents,” Recent Patents on Materials Science, vol. 5, pp. 48–67, 2012.
[20]  C. Meola and G. M. Carlomagno, “Recent advances in the use of infrared thermography,” Measurement Science and Technology, vol. 15, no. 9, pp. R27–R58, 2004.
[21]  C. Meola and G. M. Carlomagno, “Application of infrared thermography to adhesion science,” Journal of Adhesion Science and Technology, vol. 20, no. 7, pp. 589–632, 2006.
[22]  G. M. Carlomagno and P. G. Berardi, “Unsteady thermotopography in non-Destructive Testing,” in III Infrared Information Exchange, C. Warren, Ed., pp. 33–40, St. Louis, Mo, USA, 1976.
[23]  J. L. Beaudoin, E. Merienne, R. Danjoux, and M. Egee, “Numerical system for infrared scanners and application to the subsurface control of materials by photothermal radiometry,” in Proceedings of the Infrared Technology and Applications, vol. 590 of Proceeding of SPIE, pp. 287–292, November 1985.
[24]  P. K. Kuo, Z. J. Feng, T. Ahmed, L. D. Favro, R. L. Thomas, and J. Hartikainen, “Parallel thermal wave imaging using a vector lockin video technique,” in Photoacoustic and Photothermal Phenomena, P. Hess and J. Pelzl, Eds., pp. 415–418, Springer, Heidelberg, Germany, 1987.
[25]  G Busse, D. Wu, and W. Karpen, “Thermal wave imaging with phase sensitive modulated thermography,” Journal of Applied Physics, vol. 71, pp. 3962–3965, 1992.
[26]  A. Lehto, J. Jaarinen, T. Tiusanen, M. Jokinen, and M. Luukkala, “Magnitude and phase in thermal wave imaging,” Electronics Letters, vol. 17, no. 11, pp. 364–365, 1981.
[27]  C. A. Bennett Jr. and R. R. Patty, “Thermal wave interferometry: a potential application of the photoacoustic effect,” Applied Optics, vol. 21, no. 1, pp. 49–54, 1981.
[28]  G. Busse, “Optoacustic phase angle measurement for probing a metal,” Applied Physics Letters, vol. 35, pp. 759–760, 1979.
[29]  R. L. Thomas, J. J. Pouch, Y. H. Wong, L. D. Favro, P. K. Kuo, and A. Rosencwaig, “Subsurface flaw detection in metals by photoacoustic microscopya,” Journal of Applied Physics, vol. 51, no. 2, pp. 1152–1156, 1980.
[30]  G. Busse, “Optoacoustic and photothermal material inspection techniques,” Applied Optics, vol. 21, pp. 107–110, 1982.
[31]  C Toscano and C. Vitiello, “Study of the influence of the staking sequence on porosity formation in carbon fibre composites,” Journal of Applied Polymer Science, vol. 122, no. 6, pp. 3583–3589, 2011.
[32]  W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” Journal of Applied Physics, vol. 32, no. 9, pp. 1679–1684, 1961.
[33]  C. Toscano, C. Meola, M. C. Iorio, and G. M. Carlomagno, “Porosity and inclusion detection in CFRP by infrared thermography,” Advances in Optical Technologies, vol. 2012, Article ID 765953, 6 pages, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133