Recent EU directives (e.g., ELV and WEEE) have caused some rethinking of the life cycle implications of fibre reinforced polymer matrix composites. Man-made reinforcement fibres have significant ecological implications. One alternative is the use of natural fibres as reinforcements. The principal candidates are bast (plant stem) fibres with flax, hemp, and jute as the current front runners. The work presented here will consider the characterisation of jute fibres and their composites. A novel technique is proposed for the measurement of fibre density. The new rule of mixtures, extended for noncircular cross-section natural fibres, is shown to provide a sensible estimate for the experimentally measured elastic modulus of the composite. 1. Introduction There have been a number of recent reviews [1–9] of natural fibre reinforcements and their composites. Virk et al. [10] proposed an extension to the rule of mixtures (ROM) for the estimation of the Young’s modulus of a composite with reinforcements of noncircular cross-section: where is the Young’s modulus, is the volume fraction, is the fibre area correction factor (FACF) [10], is the fibre diameter distribution factor (FDDF) [11], is the fibre length distribution factor (FLDF) [12], and is the fibre orientation distribution factor (FODF) [13] with subscript , , , and being composite, fibre, isotropic matrix, and voids ( ), respectively. For the case of hollow fibres, the voidage should be classified as that internal to the fibre (i.e., the lumen in natural fibres), , and that external to the fibre, , such that . When the fibres are characterised taking into account the internal features, the internal voids are not expected to influence the mechanical properties of the composites. The separation of internal and external voids is equally applicable to man-made hollow fibres [14, 15]. For hollow fibres, it is then necessary to determine the density of the fibre material (primarily cellulose in natural fibres) and the volume fraction of the void within the fibre. Typical values for each of these parameters would be(i) = 14–87?GPa (bast natural fibres) [6], ~70?GPa (glass), ~140?GPa (aramid), or ~210?GPa (carbon),(ii) = 1–3?GPa (polymers),(iii) = 0.1–0.3 (random orientation), 0.3–0.6 (woven fabric), or 0.5–0.8 (unidirectional),(iv) = 1.42 (i.e., 2697?μm2/1896?μm2) for jute [10] as the factor compensates for the overestimate in the apparent cross-sectional area (CSA) when CSA is derived from an apparent diameter with the assumption of circular cross-section and is calculated as the ratio of apparent CSA/true
References
[1]
N. P. J. Dissanayake and J. Summerscales, “Life cycle assessment for natural fibre composites,” in Green Composites from Natural Resources, V. K. Thakur, Ed., chapter 8, pp. 157–186, Taylor & Francis, Amsterdam, The Netherlands, 2014, http://www.crcpress.com/product/isbn/9781466570696.
[2]
C. Hill and M. Hughes, “Natural fibre reinforced composites opportunities and challenges,” Journal of Biobased Materials and Bioenergy, vol. 4, no. 2, pp. 148–158, 2010.
[3]
M. P. Ho, H. Wang, J. H. Lee et al., “Critical factors on manufacturing processes of natural fibre composites,” Composites B, vol. 43, no. 8, pp. 3549–3562, 2012.
[4]
G. Koronis, A. Silva, and M. Fontul, “Green composites: a review of adequate materials for automotive applications,” Composites B, vol. 44, no. 1, pp. 120–127, 2013.
[5]
D. U. Shah, “Developing plant fibre composites for structural applications by optimising composite parameters: a critical review,” Journal of Materials Science, vol. 48, no. 18, pp. 6083–6107, 2013.
[6]
J. Summerscales, N. P. J. Dissanayake, W. Hall, and A. S. Virk, “A review of bast fibres and their composites—part 1: fibres as reinforcements,” Composites A, vol. 41, no. 10, pp. 1329–1335, 2010.
[7]
J. Summerscales, N. Dissanayake, W. Hall, and A. S. Virk, “A review of bast fibres and their composites—part 2: composites,” Composites A, vol. 41, no. 10, pp. 1336–1344, 2010.
[8]
J. Summerscales, A. S. Virk, and W. Hall, “A review of bast fibres and their composites—part 3: modelling,” Composites A, vol. 44, no. 1, pp. 132–139, 2013.
[9]
J. Summerscales and S. Grove, “Manufacturing methods for natural fibre composites,” in Natural Fibre Composites: Materials, Processes and Properties, A. Hodzic and R. Shanks, Eds., chapter 7, pp. 176–215, Woodhead, Cambridge, UK, 2014, http://www.woodheadpublishing.com/en/book.aspx?bookID=2620.
[10]
A. S. Virk, W. Hall, and J. Summerscales, “Modulus and strength prediction for natural fibre composites,” Materials Science and Technology, vol. 28, no. 7, pp. 864–871, 2012.
[11]
J. Summerscales, W. Hall, and A. S. Virk, “A fibre diameter distribution factor (FDDF) for natural fibre composites,” Journal of Materials Science, vol. 46, no. 17, pp. 5875–5880, 2011.
[12]
H. L. Cox, “The elasticity and strength of paper and other fibrous materials,” The British Journal of Applied Physics, vol. 3, no. 3, pp. 72–79, 1952.
[13]
H. Krenchel, Fibre Reinforcement, Akademisk Forlag, Copenhagen, Denmark, 1964.
[14]
M. Hucker, I. Bond, S. Bleay, and S. Haq, “Experimental evaluation of unidirectional hollow glass fibre/epoxy composites under compressive loading,” Composites A, vol. 34, no. 10, pp. 927–932, 2003.
[15]
M. Hucker, I. Bond, S. Bleay, and S. Haq, “Investigation into the behaviour of hollow glass fibre bundles under compressive loading,” Composites A, vol. 34, no. 11, pp. 1045–1052, 2003.
[16]
I. M. Daniel and O. Ishai, Engineering Mechanics of Composite Materials, Oxford University Press, New York, NY, USA, 2nd edition, 2005.
[17]
R. F. Gibson, Principles of Composite Material Mechanics, McGraw-Hill, New York, NY, USA, 1994.
[18]
Grafil Test Methods, (reference 000.05), Courtaulds Limited, Coventry, UK, 1980.
[19]
P. T. Curtis, “CRAG test methods for the measurement of the engineering properties of fibre reinforced plastics,” Royal Aircraft Establishment Technical Report RAE-TR-88-012, 1988.
[20]
F. J. Guild and J. Summerscales, “Microstructural image analysis applied to fibre composite materials: a review,” Composites, vol. 24, no. 5, pp. 383–393, 1993.
[21]
J. Summerscales, Ed., Microstructural Characterisation of Fibre-Reinforced Composites, Woodhead, Cambridge, UK; CRC Press, Boca Raton, Fla, USA, 1998.
[22]
A. G. Facca, M. T. Kortschot, and N. Yan, “Predicting the elastic modulus of natural fibre reinforced thermoplastics,” Composites A, vol. 37, no. 10, pp. 1660–1671, 2006.
[23]
A. S. Virk, W. Hall, and J. Summerscales, “Failure strain as the key design criterion for fracture of natural fibre composites,” Composites Science and Technology, vol. 70, no. 6, pp. 995–999, 2010.
[24]
J. Summerscales and T. J. Searle, “Low-pressure (vacuum infusion) techniques for moulding large composite structures,” Proceedings of the Institution of Mechanical Engineers L, vol. 219, no. 1, pp. 45–58, 2005.