全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Studies on Carbon-Fly Ash Composites with Chopped PANOX Fibers

DOI: 10.1155/2013/674073

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chemical analysis and morphological studies of fly ash reveals the complex chemical constituents present as spherical particles with diameter of less than 25?μm. The constituents of fly ash are silica, alumina, iron oxide, titanium dioxide, calcium and magnesium oxide, and other trace elements. The use of thermosetting as well thermoplastic polymer matrix has been made by several workers to develop polymer matrix fly ash particulate composites by using the hard and abrasive properties of fly ash and lightweight of polymers. Such composites have poor mechanical strength, fracture toughness, and thermal stability. To overcome these shortcomings, in carbonaceous matrix, the carbon fibers were added as additional reinforcement along with the fly ash. The composites were developed with two different methods known as Dry method and Wet method. The processing parameters such as temperature and pressure were optimized in establishing the carbon matrix. Physical, thermal, and mechanical characteristics were studied. The microstructures of composites show good compatibility between fly ash and fibers with the carbon matrix. These composites have higher strength, thermal stability, and toughness as compared to polymer matrix fly ash particulate composites. 1. Introduction The spherical shaped materials blown out from the furnace during combustion of coal in thermal power stations make up 75% of ash generated. The spherules when empty are called cenospheres and when filled up with smaller spheres are known as plerospheres [1]. The cenospheres comprise of 0.5–1.0 weight percentage of the fly ash individual particles are chemically fairly homogeneous, but the pronounced compositional variation exists among particles with similar physical and structural attributes [2]. Cenospheres are compressed of nearly stoichiometric mullite (3Al2O3·2SiO2) needles bonded by aluminosilicate glass of similar composition that offers excellent thermal, elastic, and mechanical characteristics for use in thermostructural applications [3]. Elemental map study through energy filtered TEM shows the aluminosilicate-based and iron oxide based-nanoparticles are present in the fly ash [4]. Unburned organic matter during combustion of coal leaves carbon in three different forms in the fly ash [5, 6]. Fly ash contains toxic elements like Co, Pb, Ni, Cd, Cu, Fe, and Zn in trace [7, 8]. Particle filled polymer composites have become attractive because of their wide applications and low cost. Polymers such as Nylon 6 [9], Natural Rubber [10, 11], Styrene Butadiene Rubber [10], Epoxy [11, 12], Poly

References

[1]  K. C. Sahu, “Characterization and utilization of fly ash,” in Fly Ash Utilization for Value Added Products, B. Chatterjee, K. K. Singh, and N. G. Goswami, Eds., pp. 15–22, NML, Jamshedpur, India, 1999.
[2]  R. Gieré, L. E. Carleton, and G. R. Lumpkin, “Micro- and nanochemistry of fly ash from a coal-fired power plant,” The American Mineralogist, vol. 88, no. 11-12, pp. 1853–1865, 2003.
[3]  R. Melvin Gottschalk, R. John Hellmann, E. Barry Sheetz, L. Andre Boehman, and R. David Stettler, “Commercially useful byproducts of coal combustion,” Ceramic Transactions, vol. 119, pp. 125–134, 2001.
[4]  Y. Chen, N. Shah, F. E. Huggins, G. P. Huffman, and A. Dozier, “Characterization of ultrafine coal fly ash particles by energy-filtered TEM,” Journal of Microscopy, vol. 217, no. 3, pp. 225–234, 2005.
[5]  J. C. Hower, R. B. Rathbone, U. M. Graham et al., “Approaches to the petrographic characterization of fly ash,” in Proceedings of the International Coal Testing Conference, pp. 49–54, Lexington, Ky, USA, May 1995.
[6]  M. M. Maroto-Valer, D. N. Taulbee, and J. C. Hower, “A novel separation of the carbon types present in fly ash by density gradient centrifugation,” in Proceedings of the Conference on Unburned Carbon on Utility Fly Ash, p. 49, University of Kentucky, Lexington, Ky, USA, 1998.
[7]  A. G. Kim and G. Kazonich, “Mass release of trace elements from coal combustion by-products,” in Proceedings of the International Ash Utilization Symposium, Center for Applied Energy Research, Lexington, Ky, USA, 1999.
[8]  D. Tracy Branam, T. Ronald Smith, V. Margaret Ennis, and P. Jammes Rybarczysk, “Trace element partitioning in groundwater at an abandoned mine-land site reclaimed with coal combustion products,” in Proceedings of the International Ash Utilization Symposium, Center for Applied Energy Research, Lexington, Ky, USA, 1999.
[9]  S. Bose and P. A. Mahanwar, “Effect of titanate coupling agent on the mechanical, thermal, dielectric, rheological, and morphological properties of filled nylon 6,” Journal of Minerals & Materials Characterization & Engineering, vol. 99, no. 1, pp. 266–272, 2006.
[10]  N. Sombatsompop, S. Thongsang, T. Markpin, and E. Wimolmala, “Fly ash particles and precipitated silica as fillers in rubbers. I. Untreated fillers in natural rubber and styrene-butadiene rubber compounds,” Journal of Applied Polymer Science, vol. 93, no. 5, pp. 2119–2130, 2004.
[11]  K. Kishore, S. M. Kulkarni, S. Sharathchandra, and D. Sunil, “On the use of an instrumented set-up to characterize the impact behaviour of an epoxy system containing varying fly ash content,” Polymer Testing, vol. 21, no. 7, pp. 763–771, 2002.
[12]  K. Kishore, N. L. Ravikumar, and D. Sunil, “The effect of a starch envelope on fly ash particles on the impact properties of filled epoxy composites,” Advanced Composites Letters, vol. 12, no. 2, pp. 45–54, 2003.
[13]  F. J. Macgarry, “Polymer matrix composites,” Annual Review of Materials Science, vol. 24, pp. 63–82, 1994.
[14]  M. Inagaki, Y. Okada, H. Miura, and H. Konno, “Preparation of carbon-coated transition metal particles from mixtures of metal oxide and polyvinylchloride,” Carbon, vol. 37, no. 2, pp. 329–334, 1999.
[15]  M. Inagaki, K. Fujita, Y. Takeuchi, K. Oshida, H. Iwata, and H. Konno, “Formation of graphite crystals at 1000-1200°C from mixtures of vinyl polymers with metal oxides,” Carbon, vol. 39, no. 6, pp. 921–929, 2001.
[16]  H. Kamiya, H. Yamada, M. Tukada, and M. Naito, “Analysis of Ash Adhesion Behavior at High Temperature Condition by Using Computer controlled FE-SEM with Heat Treatment Unit,” http://www.netl.doe.gov/publications/proceedings/02/GasCleaning.11paper.pdf.
[17]  R. K. Jain, L. M. Manocha, and O. P. Bahl, “Surface treatment of carbon fibres with nitric acid and its influence on the mechanical behaviour of composites made with phenolic and furan (resins) as matrices,” Indian Journal of Technology, vol. 29, no. 4, pp. 163–172, 1991.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133