We have studied in this paper the dynamics of globally coupled phase oscillators having the Lorentzian frequency distribution with zero mean in the presence of both time delay and noise. Noise may be Gaussian or non-Gaussian in characteristics. In the limit of zero noise strength, we find that the critical coupling strength (CCS) increases linearly as a function of time delay. Thus the role of time delay in the dynamics for the deterministic system is qualitatively equivalent to the effect of frequency fluctuations of the phase oscillators by additive white noise in absence of time delay. But for the stochastic model, the critical coupling strength grows nonlinearly with the increase of the time delay. The linear dependence of the critical coupling strength on the noise intensity also changes to become nonlinear due to creation of additional phase difference among the oscillators by the time delay. We find that the creation of phase difference plays an important role in the dynamics of the system when the intrinsic correlation induced by the finite correlation time of the noise is small. We also find that the critical coupling is higher for the non-Gaussian noise compared to the Gaussian one due to higher effective noise strength. 1. Introduction In this paper we have investigated the synchronization behavior of globally coupled phase oscillators. Recent trends in physics [1–6] imply that it is one of the important issues in basic science such as the Brownian motion, nanomaterials, and biophysics. Biological clocks [7, 8], chemical oscillators [9–11], coupled map lattices [12, 13], and coupled random frequency oscillators [14] are examples where the phenomena of synchronization have been observed. To account the phenomenon, coupled phase oscillators model was introduced by Kuramoto [9–11], and it is popularly known as the Kuramoto model. After that, synchronization in nonlinear systems has been systematically studied and attracted much attention. Several reviews on the developments can be found in [1, 2, 5, 6]. Recently there has been considerable interest in some stochastic systems, whose dynamics are determined by both the present state and the state in the past with the time delay ( ). It has been considered in visual feedback [15, 16] and brain activity [17, 18] to mention a few. Delay is also studied in the coupled oscillator (CO) model [19–23]. In [19] authors showed that intrinsic frequency of the network of limit cycle oscillators decreases as the time delay grows, and for greater delay there is a metastable synchronized state. However, Nakamura
References
[1]
S. H. Strogatz, “From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators,” Physica D. Nonlinear Phenomena, vol. 143, no. 1–4, pp. 1–20, 2000.
[2]
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization—A Universal Concept in Nonlinear Sciences, vol. 12, Cambridge University Press, Cambridge, UK, 2001.
[3]
R. Albert and A. L. Barabási, “Statistical mechanics of complex networks,” Reviews of Modern Physics, vol. 74, no. 1, pp. 47–97, 2002.
[4]
H. Haken, Brain Dynamics: Synchronization and Activity Patterns in Pulse-Coupled Neural Nets with Delays and Noise, Springer, Berlin, Germany, 2002.
[5]
S. C. Manrubia, A. S. Mikhailov, and D. H. Zanette, Emergence of Dynamical Order: Synchronization Phenomena in Complex Systems, World Scientific, Singapore, 2004.
[6]
J. J. Acebron, L. L. Bonilla, C. J. Perez-Vicente, F. Ritort, R. Spigler, and The Kuramoto model:, “A simple paradigm for synchronization phenomena,” Reviews of Modern Physics, vol. 77, no. 1, pp. 137–185, 2005.
[7]
A. T. Winfree, “Biological rhythms and the behavior of populations of coupled oscillators,” Journal of Theoretical, vol. 16, no. 1, pp. 15–42, 1967.
[8]
A. T. Winfree, The Geometry of Biological Time, Springer, New York, NY, USA, 1980.
[9]
Y. Kuramoto, “Cooperative dynamics of oscillator community—a study based on lattice of rings,” Progress of Theoretical Physics, vol. 79, pp. 223–240, 1984.
[10]
Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, New York, NY, USA, 1984.
[11]
Y. Kuramoto and I. Nishikawa, “Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities,” Journal of Statistical Physics, vol. 49, no. 3-4, pp. 569–605, 1987.
[12]
K. Kaneko, “Globally coupled chaos violates the law of large numbers but not the central-limit theorem,” Physical Review Letters, vol. 65, no. 12, pp. 1391–1394, 1990.
[13]
L. M. Pecora and T. L. Caroll, “Master stability functions for synchronized coupled systems,” Physical Review Letters, vol. 80, no. 10, pp. 2109–2112, 1998.
[14]
H. Hong, M. Y. Choi, and B. J. Kim, “Phase ordering on small-world networks with nearest-neighbor edges,” Physical Review E, vol. 65, no. 4, Article ID 047104, 4 pages, 2002.
[15]
P. Tass, J. Kurths, M. G. Rosenblum, G. Gausti, and H. Hefter, “Delay-induced transitions in visually guided movements,” Physical Review E, vol. 54, no. 3, pp. R2224–R2227, 1996.
[16]
M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control systems,” Science, vol. 197, no. 4300, pp. 287–289, 1977.
[17]
T. D. Frank, A. Daffertshofer, P. J. Beek, and H. Haken, “Impacts of noise on a field theoretical model of the human brain,” Physica D, vol. 127, no. 3-4, pp. 233–249, 1999.
[18]
J. J. Wright and D. T. J. Liley, “Simulation of electrocortical waves,” Biological Cybernetics, vol. 72, no. 4, pp. 347–356, 1995.
[19]
E. Niebur, H. G. Schuster, and D. M. Kammen, “Collective frequencies and metastability in networks of limit-cycle oscillators with time delay,” Physical Review Letters, vol. 67, no. 20, pp. 2753–2756, 1991.
[20]
Y. Nakamura, F. Tominaga, and T. Munakata, “Clustering behavior of time-delayed nearest-neighbor coupled oscillators,” Physical Review E, vol. 49, no. 6, pp. 4849–4856, 1994.
[21]
M. Y. Choi, H. J. Kim, D. Kim, and H. Hong, “Synchronization in a system of globally coupled oscillators with time delay,” Physical Review E, vol. 61, no. 1, pp. 371–381, 2000.
[22]
M. K. S. Yeung and S. H. Strogatz, “Time delay in the Kuramoto model of coupled oscillators,” Physical Review Letters, vol. 82, no. 3, pp. 648–651, 1999.
[23]
M. K. Sen, B. C. Bag, K. G. Petrosyan, and C. K. Hu, “Effect of time delay on the onset of synchronization of the stochastic Kuramoto model,” Journal of Statistical Mechanics, vol. 2010, Article ID P08018, 2010.
[24]
E. Montbrió, D. Pazó, and J. Schmidt, “Time delay in the Kuramoto model with bimodal frequency distribution,” Physical Review E, vol. 74, no. 5, Article ID 056201, 5 pages, 2006.
[25]
L. Borland, “Ito-Langevin equations within generalized thermostatistics,” Physics Letters A, vol. 245, no. 1-2, pp. 67–72, 1998.
[26]
H. S. Wio and R. Toral, “Effect of non-Gaussian noise sources in a noise-induced transition,” Physica D, vol. 193, no. 1–4, pp. 161–168, 2004.
[27]
S. Bouzat and H. S. Wio, “Current and efficiency enhancement in Brownian motors driven by non Gaussian noises,” European Physical Journal B, vol. 41, no. 1, pp. 97–105, 2004.
[28]
S. Bouzat and H. S. Wio, “New aspects on current enhancement in Brownian motors driven by non-Gaussian noises,” Physica A, vol. 351, no. 1, pp. 69–78, 2005.
[29]
P. Hanggi, P. Talkner, and M. Borkovec, “Reaction-rate theory: fifty years after Kramers,” Reviews of Modern Physics, vol. 62, no. 2, pp. 251–341, 1990.
[30]
P. H?nggi and P. Jung, “Colored noise in dynamical systems,” in Advances in Chemical Physics, vol. 89, pp. 239–326, 1995.
[31]
B. C. Bag, “Colored non-Gaussian noise driven systems: mean first passage time,” European Physical Journal B, vol. 34, no. 1, pp. 115–118, 2003.
[32]
P. Majee, G. Goswami, and B. C. Bag, “Colored non-Gaussian noise induced resonant activation,” Chemical Physics Letters, vol. 416, no. 4–6, pp. 256–260, 2005.
[33]
G. Goswami, P. Majee, P. K. Ghosh, and B. C. Bag, “Colored multiplicative and additive non-Gaussian noise-driven dynamical system: mean first passage time,” Physica A, vol. 374, no. 2, pp. 549–558, 2007.
[34]
B. C. Bag and C. K. Hu, “Escape through an unstable limit cycle driven by multiplicative colored non-Gaussian and additive white Gaussian noises,” Physical Review E, vol. 75, no. 4, Article ID 042101, 4 pages, 2007.
[35]
M. K. Sen, A. Baura, and B. C. Bag, “Noise induced escape through an unstable limit cycle in the presence of a fluctuating barrier,” Journal of Statistical Mechanics, vol. 2009, no. 11, Article ID P11004, 2009.
[36]
B. C. Bag, K. G. Petrosyan, and C. K. Hu, “Influence of noise on the synchronization of the stochastic Kuramoto model,” Physical Review E, vol. 76, no. 5, Article ID 056210, 6 pages, 2007.
[37]
P. K. Ghosh, M. K. Sen, and B. C. Bag, “Kinetics of self-induced aggregation of Brownian particles: non-Markovian and non-Gaussian features,” Physical Review E, vol. 78, no. 5, Article ID 051103, 7 pages, 2008.
[38]
B. C. Bag and C. K. Hu, “Current inversion induced by colored non-Gaussian noise,” Journal of Statistical Mechanics, vol. 2009, no. 2, Article ID P02003, 2009.
[39]
M. K. Sen and B. C. Bag, “Generalization of barrier crossing rate for coloured non Gaussian noise driven open systems,” The European Physical Journal B, vol. 68, no. 2, pp. 253–259, 2009.
[40]
A. K. Baura, M. K. Sen, G. Goswami, and B. C. Bag, “Colored non-Gaussian noise driven open systems: generalization of Kramers’ theory with a unified approach,” Journal of Chemical Physics, vol. 134, no. 4, Article ID 044126, 10 pages, 2011.
[41]
M. A. Fuentes, H. S. Wio, and R. Toral, “Effective Markovian approximation for non-Gaussian noises: a path integral approach,” Physica A, vol. 303, no. 1-2, pp. 91–104, 2002.
[42]
X. Luo and S. Zhu, “Stochastic resonance driven by two different kinds of colored noise in a bistable system,” Physical Review E, vol. 67, no. 2, Article ID 021104, 13 pages, 2003.
[43]
P. Majee and B. C. Bag, “The effect of interference of coloured additive and multiplicative white noises on escape rate,” Journal of Physics A, vol. 37, no. 10, pp. 3353–3361, 2004.
[44]
K. Lindenberg and B. J. West, The Nonequilibrium Statistitical Mechanics of Open and Closed Systems, VCH, New York, NY, USA, 1990.
[45]
H. Hong, H. Chate, H. Park, and L. H. Tang, “Entrainment transition in populations of random frequency oscillators,” Physical Review Letters, vol. 99, no. 18, Article ID 184101, 4 pages, 2007.
[46]
R. T?njes, “Synchronization transition in the Kuramoto model with colored noise,” Physical Review E, vol. 81, no. 5, Article ID 055201, 4 pages, 2010.
[47]
R. Toral, “Computational field theory and pattern formation,” in Computational Physics, P. Garrido and J. Marro, Eds., vol. 448 of Lecture Notes in Physics, pp. 1–65, Springer.
[48]
R. Mannella, “Numerical integration of stochastic differential equations,” http://arxiv.org/abs/condmat/9709326.