全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Combustion Rate of Solid Carbon in the Axisymmetric Stagnation Flowfield Established over a Sphere and/or a Flat Plate

DOI: 10.1155/2013/790672

Full-Text   Cite this paper   Add to My Lib

Abstract:

Carbon combustion in the forward stagnation flowfield has been examined through experimental comparisons, by conducting aerothermochemical analyses, with the surface C-O2 and C-CO2 reactions and the gas-phase CO-O2 reaction taken into account. By virtue of the generalized species-enthalpy coupling functions, close coupling of those reactions has been elucidated. Explicit combustion-rate expressions by use of the transfer number in terms of the natural logarithmic term, just like that for droplet combustion, have further been obtained for the combustion response in the limiting situations. It has been confirmed that before the establishment of CO flame, the combustion rate can fairly be represented by the expression in the frozen mode, that after its establishment by the expression in the flame-attached or flame-detached modes, and that the critical condition derived by the asymptotics can fairly predict the surface temperature for its establishment. The formulation has further been extended to include the surface C-H2O and gas-phase H2-O2 reactions additionally, so as to evaluate the combustion rate in humid airflow. Since those expressions are explicit and have fair accuracy, they are anticipated to make various contributions not only for qualitative/quantitative studies, but also for various aerospace applications, including propulsion with high-energy-density fuels. 1. Introduction Carbon combustion has been a research subject, indispensable for practical utilization of coal/char combustion, aerospace applications with carbon-carbon composites (C/C-composites), ablative carbon heat shields, and/or propulsion with using high-energy-density fuels. Because of this practical importance, extensive research has been conducted not only experimentally but also theoretically/numerically, and several comprehensive reviews [1–12] summarize accomplishments in this field. Nevertheless, because of complexities involved, there still remain several problems indispensable for understanding the basic nature of the combustion. Some of them also command fundamental interest, because of simultaneous existence of surface and gas-phase reactions, interacting with each other. Generally speaking, the carbon combustion consists of the following processes:(1)diffusion of oxidizing species to the solid surface,(2)adsorption of molecules onto active sites on the surface,(3)formation of products from adsorbed molecules on the surface,(4)desorption of solid oxides into the gas phase, (5)migration of gaseous products through the boundary layer into the freestream. The slowest of

References

[1]  H. R. Batchelder, R. M. Busche, and W. P. Armstrong, “Kinetics of coal gasification,” Industrial and Engineering Chemistry, vol. 45, no. 9, pp. 1856–1878, 1953.
[2]  M. Gerstein and K. P. Coffin, “Combustion of solid fuels,” in Combustion Processes, B. Lewis, R. N. Pease, and H. S. Taylor, Eds., pp. 444–469, Princeton University Press, Princeton, NJ, USA, 1956.
[3]  P. L. Walker Jr., F. Rusinko Jr., and L. G. Austin, “Gas reaction of carbon,” in Advances in Catalysis and Related Subjects, D. D. Eley, P. W. Selwood, and P. B. Weisz, Eds., vol. 11, pp. 133–221, Academic Press, New York, NY, USA, 1959.
[4]  T. J. Clark, R. E. Woodley, and D. R. De Halas, “Gas-graphite systems,” in Nuclear Graphite, R. E. Nightingale, Ed., pp. 387–444, Academic Press, New York, NY, USA, 1962.
[5]  L. N. Khitrin, The Physics of Combustion and Explosion, Israel Program for Scientific Translations, Jerusalem, Israel, 1962.
[6]  M. F. Mulcahy and I. W. Smith, “Kinetics of combustion of pulverized fuel: a review of theory and experiment,” Pure and Applied Chemistry, vol. 19, no. 1, pp. 81–108, 1969.
[7]  H. G. Maahs, “Oxidation of carbon at high temperatures: reaction-rate control or transport control,” NASA TN D-6310, 1971.
[8]  D. E. Rosner, “High-temperature gas-solid reactions,” Annual Review of Materials Science, vol. 2, pp. 573–606, 1972.
[9]  R. H. Essenhigh, “Combustion and flame propagation in coal systems: a review,” Symposium (International) on Combustion, vol. 16, no. 1, pp. 353–374, 1977.
[10]  R. H. Essenhigh, “Fundamentals of coal combustion,” in Chemistry of Coal Utilization, M. A. Elliott, Ed., pp. 1153–1312, Wiley-Interscience, New York, NY, USA, 1981.
[11]  K. Annamalai and W. Ryan, “Interactive processes in gasification and combustion-II. Isolated carbon, coal and porous char particles,” Progress in Energy and Combustion Science, vol. 19, no. 5, pp. 383–446, 1993.
[12]  K. Annamalai, W. Ryan, and S. Dhanapalan, “Interactive processes in gasification and combustion—part III: coal/char particle arrays, streams and clouds,” Progress in Energy and Combustion Science, vol. 20, no. 6, pp. 487–618, 1994.
[13]  J. R. Arthur, “Reactions between carbon and oxygen,” Transactions of the Faraday Society, vol. 47, pp. 164–178, 1951.
[14]  H. Schlichting and K. Gestin, Plane Stagnation-Point Flow, Boundary Layer Theory, Springer, Berlin, Germany, 8th edition, 2000.
[15]  A. Makino, “Mass transfer related to heterogeneous combustion of solid carbon in the forward stagnation region—part 1: combustion rate and flame structure,” in Mass Transfer in Chemical Engineering Processes, J. Marko?, Ed., pp. 251–282, InTech, Rijeka, Croatia, 2011, http://www.intechopen.com/articles/show/title/mass-transfer-related-to-heterogeneous-combustion-of-solid-carbon-in-the-forward-stagnation-region-1.
[16]  A. Makino, “Mass transfer related to heterogeneous combustion of solid carbon in the forward stagnation region—part 2: combustion rate in special environments,” in Mass Transfer in Chemical Engineering Processes, J. Marko?, Ed., pp. 281–306, InTech, Rijeka, Croatia, 2011, http://www.intechopen.com/articles/show/title/mass-transfer-related-to-heterogeneous-combustion-of-solid-carbon-in-the-forward-stagnation-region-2.
[17]  H. Tsuji and K. Matsui, “An aerothermochemical analysis of combustion of carbon in the stagnation flow,” Combustion and Flame, vol. 26, pp. 283–297, 1976.
[18]  G. Adomeit, G. Mohiuddin, and N. Peters, “Boundary layer combustion of carbon,” Symposium (International) on Combustion, vol. 16, no. 1, pp. 731–743, 1977.
[19]  G. Adomeit, W. Hocks, and K. Henriksen, “Combustion of a carbon surface in a stagnation point flow field,” Combustion and Flame, vol. 59, no. 3, pp. 273–288, 1985.
[20]  K. Henriksen, W. Hocks, and G. Adomeit, “Combustion of a carbon surface in a stagnation point flow field—part II: ignition and quench phenomena,” Combustion and Flame, vol. 71, no. 2, pp. 169–177, 1988.
[21]  K. Matsui and H. Tsuji, “An aerothermochemical analysis of solid carbon combustion in the stagnation flow accompanied by homogeneous CO oxidation,” Combustion and Flame, vol. 70, no. 1, pp. 79–99, 1987.
[22]  A. Makino and C. K. Law, “Quasi-steady and transient combustion of a carbon particle: theory and experimental comparisons,” Symposium (International) on Combustion, vol. 21, no. 1, pp. 183–191, 1988.
[23]  A. Makino, “A theoretical and experimental study of carbon combustion in stagnation flow,” Combustion and Flame, vol. 81, no. 2, pp. 166–187, 1990.
[24]  P. Chung, “Chemically reacting nonequilibrium boundary layers,” in Advances in Heat Transfer, J. P. Hartnett and T. F. Irvine Jr., Eds., vol. 2, pp. 109–270, Academic Press, New York, NY, USA, 1965.
[25]  C. K. Law, “On the stagnation-point ignition of a premixed combustible,” International Journal of Heat and Mass Transfer, vol. 21, no. 11, pp. 1363–1368, 1978.
[26]  D. B. Spalding, “Combustion of fuel particles,” Fuel, vol. 30, no. 1, pp. 121–130, 1951.
[27]  A. Makino, “An approximate explicit expression for the combustion rate of a small carbon particle,” Combustion and Flame, vol. 90, no. 2, pp. 143–154, 1992.
[28]  A. Makino, T. Namikiri, and N. Araki, “Combustion rate of graphite in a high stagnation flowfield and its expression as a function of the transfer number,” Symposium (International) on Combustion, vol. 2, pp. 2949–2956, 1998.
[29]  P. A. Libby and T. R. Blake, “Theoretical study of burning carbon particles,” Combustion and Flame, vol. 36, pp. 139–169, 1979.
[30]  S. K. Ubhayakar and F. A. Williams, “Burning and extinction of a laser-ignited carbon particle in quiescent mixtures of oxygen and nitrogen,” Journal of the Electrochemical Society, vol. 123, no. 5, pp. 747–756, 1976.
[31]  K. Henriksen, “Weak homogeneous burning in front of a carbon surface,” Symposium (International) on Combustion, vol. 22, no. 1, pp. 47–57, 1989.
[32]  A. Makino and C. K. Law, “Ignition and extinction of CO flame over a carbon rod,” Combustion Science and Technology, vol. 73, no. 4–6, pp. 589–615, 1990.
[33]  L. N. Khitrin and E. S. Golovina, “Interaction between graphite and various chemically active gases at high temperatures,” in High Temperature Technology, pp. 485–496, Butterworths, London, UK, 1964.
[34]  W. Visser and G. Adomeit, “Experimental investigation of the ignition and combustion of a graphite probe in cross flow,” Symposium (International) on Combustion, vol. 20, no. 1, pp. 1845–1851, 1985.
[35]  D. J. Harris and I. W. Smith, “Intrinsic reactivity of petroleum coke and brown coal char to carbon dioxide, steam and oxygen,” Symposium (International) on Combustion, vol. 23, no. 1, pp. 1185–1190, 1991.
[36]  J. B. Howard, G. C. Williams, and D. H. Fine, “Kinetics of carbon monoxide oxidation in postflame gases,” Symposium (International) on Combustion, vol. 14, no. 1, pp. 975–986, 1973.
[37]  K. Matsui, A. K?yama, and K. Uehara, “Fluid-mechanical effects on the combustion rate of solid carbon,” Combustion and Flame, vol. 25, pp. 57–66, 1975.
[38]  K. Matsui, H. Tsuji, and A. Makino, “The effects of water vapor concentration on the rate of combustion of an artificial graphite in humid air flow,” Combustion and Flame, vol. 50, pp. 107–118, 1983.
[39]  K. Matsui, H. Tsuji, and A. Makino, “A further study of the effects of water vapor concentration on the rate of combustion of an artificial graphite in humid air flow,” Combustion and Flame, vol. 63, no. 3, pp. 415–427, 1986.
[40]  H. Schlichting and K. Gestin, Sphere, Boundary Layer Theory, Springer, Berlin, Germany, 8th edition, 2000.
[41]  W. Visser, Verbrenung Einer Umstr?mten Graphitoberfl?che [Ph.D. thesis], Institute für Allgemaine Mechanik, RWTH, Aachen, Germany, 1984.
[42]  A. Makino, N. Araki, and Y. Mihara, “Combustion of artificial graphite in stagnation flow: estimation of global kinetic parameters from experimental results,” Combustion and Flame, vol. 96, no. 3, pp. 261–274, 1994.
[43]  J. Nagle and R. F. Strickland-Constable, “Oxidation of Carbon between 1000–2000?°C,” in Proceedings of the 5th Conference on Carbon, pp. 154–164, Pergamon, New York, NY, USA, 1962.
[44]  R. T. Yang and M. Steinberg, “A diffusion cell method for studying heterogeneous kinetics in the chemical reaction/diffusion controlled region. Kinetics of C + CO2→2CO at 1200–1600?°C,” Industrial and Engineering Chemistry Fundamentals, vol. 16, no. 2, pp. 235–242, 1977.
[45]  A. Makino, I. Kato, M. Senba, H. Fujizaki, and N. Araki, “Flame structure and combustion rate of burning graphite in the stagnation flow,” Symposium (International) on Combustion, vol. 26, no. 2, pp. 3067–3069, 1996.
[46]  A. Makino, M. Senba, M. Shintomi, H. Fujizaki, and N. Araki, “Experimental determination of the spatial resolution of CARS in the combustion field—CARS thermometry applied to the combustion field of solid carbon in a stagnation flow,” Nensho no Kagaku to Gijutsu (Combustion Science and Technology), vol. 5, no. 2, pp. 89–101, 1997 (Japanese).
[47]  A. Li?án, “The asymptotic structure of counterflow diffusion flames for large activation energies,” Acta Astronautica, vol. 1, no. 7-8, pp. 1007–1039, 1974.
[48]  M. Matalon, “Complete burning and extinction of a carbon particle in an oxidizing atmosphere,” Combustion Science and Technology, vol. 24, no. 3-4, pp. 115–127, 1980.
[49]  M. Matalon, “Weak burning and gas-phase ignition about a carbon particle in an oxidizing atmosphere,” Combustion Science and Technology, vol. 25, no. 1-2, pp. 43–48, 1981.
[50]  M. Matalon, “The steady burning of a solid particle,” SIAM Journal on Applied Mathematics, vol. 42, no. 4, pp. 787–803, 1982.
[51]  H. Tsuji and I. Yamaoka, “The counterflow diffusion flame in the forward stagnation region of a porous cylinder,” Symposium (International) on Combustion, vol. 11, no. 1, pp. 979–984, 1967.
[52]  G. K. Sobolev, “High-temperature oxidation and burning of carbon monoxide,” Symposium (International) on Combustion, vol. 7, no. 1, pp. 386–391, 1958.
[53]  Z. Chukhanov, “The burning of carbon. 1. The sequence of processes in the combustion of air suspensions of solid fuels,” Technical Physics of the USSR, vol. 5, pp. 41–58, 1938.
[54]  Z. Chukhanov, “The Burning of Carbon—part II: oxidation,” Technical Physics of the USSR, vol. 5, pp. 511–524, 1938.
[55]  E. S. Golovina and G. P. Khaustovich, “The interaction of carbon with carbon dioxide and oxygen at temperatures up to 3000?°K,” Symposium (International) on Combustion, vol. 8, no. 1, pp. 784–792, 1991.
[56]  A. Makino and N. Umehara, “Combustion rates of graphite rods in the forward stagnation field of the high-temperature, humid airflow,” Proceedings of the Combustion Institute, vol. 31, no. 2, pp. 1873–1880, 2007.
[57]  K. Fischbeck, “über das Reaktionsverm?gen der Festen Stoffe,” Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie, vol. 39, no. 5, pp. 316–330, 1933.
[58]  K. Fischbeck, L. Neundeubel, and F. Salzer, “über das Reaktionsverm?gen von Kristallarten,” Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie, vol. 40, pp. 517–522, 1934.
[59]  C. M. Tu, H. Davis, and H. C. Hottel, “Combustion rate of carbon, combustion of spheres in flowing gas streams,” Industrial and Engineering Chemistry, vol. 26, no. 7, pp. 749–757, 1934.
[60]  D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, edited by J. P. Appleton, Plenum, New York, NY, USA, 2nd edition, 1969.
[61]  Y. Katto, An Outline of Heat Transfer, 1982.
[62]  F. M. White, Heat and Mass Transfer, Addison-Wesley, Reading, Mass, USA, 1988.
[63]  A. S. Parker and H. C. Hottel, “Combustion rate of carbon, study of gas-film structure by microsampling,” Industrial and Engineering Chemistry, vol. 28, no. 11, pp. 1334–1341, 1936.
[64]  K. Matsui, Private communications, 1983.
[65]  A. Makino, H. Fujizaki, and N. Araki, “Combustion rate of burning graphite in a stagnation flow of water vapor,” Combustion and Flame, vol. 113, no. 1-2, pp. 258–263, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133