The analysis of gas evolving during the pyrolysis of two very different rank coals was studied by using FT-IR spectroscopy. These coals, coming from Sulcis (Sardinia, Italy) and from South Africa, respectively, were subjected to progressive heating up to 800°C in vacuum. The thermal destruction of coal was followed by monitoring the production of gases in this range of temperature. The gases evolving in the heating from room temperature to 800°C were collected at intervals of 100°C and analysed by infrared spectroscopy. The relative pressures were plotted against temperature. These graphs clearly show the correlation among qualitative gas composition, temperature, and the maximum value of emissions, thus confirming FT-IR analysis as a powerful key for pyrolysis monitoring. 1. Introduction Pyrolysis represents the first step in most solid fuel conversion processes, including combustion, gasification, and liquefaction, and has a significant influence on every subsequent stage for the recovery of valuable chemicals and energy [1]. Coal has been used for a long period both as fossil fuel and as raw material by the chemical industry. Currently, petroleum and natural gas represent the two main energy sources, but it is well-known that these supplies have no longer kept pace with the ever-increasing energy demand of many nations. As a result, an imperative need to rely on a well-known energy source such as coal is paramount. Unfortunately, impurities of coal such as sulphur and nitrogen derivatives are released into the atmosphere causing problems such as acid rains and smog. The unburnt mineral matter can also be released into the air as particulate. However, what concerns the most is CO2 emissions, which are believed to influence climate change. Due to the role that coal plays in the energy production, it would be worthwhile to reduce the negative effects of air pollution caused by and emissions by increasing the efficiency of coal conversion [2–4]. Coal pyrolysis is considered an effective way for its clean use because desulfurized char and tar can be obtained at the end of the reaction. Coal tar can be utilized as raw material for the industrial synthesis of dyes, plastics, synthetic fibres, fine chemicals, and cosmetic products, due to its good activity as a cosmetic biocide [5]. It is also a type of raw material from which phenols, naphthalenes, and anthracene can be extracted for the production of washing oil, cementitious agent and catalytically hydrogenated products to obtain gasoline, diesel oil, and so forth. Therefore, it is necessary to deepen the
References
[1]
K. Miura, “Mild conversion of coal for producing valuable chemicals,” Fuel Processing Technology, vol. 62, no. 2, pp. 119–135, 2000.
[2]
B. Avid, B. Purevsuren, M. Born, J. Dugarjav, Y. Davaajav, and A. Tuvshinjargal, “Pyrolysis and TG analysis of Shivee Ovoo coal from Mongolia,” Journal of Thermal Analysis and Calorimetry, vol. 68, no. 3, pp. 877–885, 2002.
[3]
J. W. Patrick, A. Walker, and S. Hanson, “The effect of coal particle size on pyrolysis and steam gasification,” Fuel, vol. 81, no. 5, pp. 531–537, 2002.
[4]
L. Yang, J. Ran, and L. Zhang, “Mechanism and kinetics of pyrolysis of coal with high ash and low fixed carbon contents,” Journal of Energy Resources Technology, vol. 133, no. 3, Article ID 031701, pp. 1–7, 2011.
[5]
R. W. Niemeier, “Petroleum, coal tar, and related products,” in Patty's Toxicology, pp. 325–370, John Wiley & Sons, New York, NY, USA, 2012.
[6]
L. S. Pedersen, H. P. Nielsen, S. Kiil et al., “Full-scale co-firing of straw and coal,” Fuel, vol. 75, no. 13, pp. 1584–1590, 1996.
[7]
C. Meesri and B. Moghtaderi, “Lack of synergetic effects in the pyrolytic characteristics of woody biomass/coal blends under low and high heating rate regimes,” Biomass and Bioenergy, vol. 23, no. 1, pp. 55–66, 2002.
[8]
H. Haykiri-Acma and S. Yaman, “Interaction between biomass and different rank coals during co-pyrolysis,” Renewable Energy, vol. 35, no. 1, pp. 288–292, 2010.
[9]
C. A. Ulloa, A. L. Gordon, and X. A. García, “Thermogravimetric study of interactions in the pyrolysis of blends of coal with radiata pine sawdust,” Fuel Processing Technology, vol. 90, no. 4, pp. 583–590, 2009.
[10]
C.-Z. Li, K. D. Bartle, and R. Kandiyoti, “Vacuum pyrolysis of maceral concentrates in a wire-mesh reactor,” Fuel, vol. 72, no. 11, pp. 1459–1468, 1993.
[11]
L. Zhang, S. Xu, W. Zhao, and S. Liu, “Co-pyrolysis of biomass and coal in a free fall reactor,” Fuel, vol. 86, no. 3, pp. 353–359, 2007.
[12]
D.-M. He, L. Zhang, J. Guan, and Q. M. Zhang, “The comparative study of Honghe lignite pyrolysis under the atmosphere of methanol and nitrogen,” Advanced Materials Research, vol. 512–515, pp. 1784–1789, 2012.
[13]
D. M. P. Wu and D. P. Harrison, “Volatile products from lignite pyrolysis and hydropyrolysis,” Fuel, vol. 65, no. 6, pp. 747–751, 1986.
[14]
J. B. Howard, “Fundamentals of coal pyrolysis and hydropyrolysis,” in Chemistry of Coal Utilization Secondary Supplementary Volume, pp. 665–784, John Wiley & Sons, New York, NY, USA, 1981.
[15]
N. Qiu, H. Li, E. Xu, J. Qin, and L. Zheng, “Temperature and time effects on free radical concentration in organic matter: evidence from laboratory pyrolysis experimental and geological samples,” Energy Exploration and Exploitation, vol. 30, no. 2, pp. 311–330, 2012.
[16]
R. D. Srivastava, H. G. Mcllvried III, and J. C. Winslow, “Coal technology for power, liquid fuels, and chemicals,” in Kent and Riegel's Handbook of Industrial Chemistry and Biotechnology, chapter 19, pp. 843–906, Springer Science + Business Media, New York, NY, USA, 11th edition, 2007.
[17]
J. Rezaiyan and N. P. Cheremisinoff, “Pyrolysis,” in Gasification Technologies: A Primer for Engineers and Scientists, pp. 145–164, CRC, New York, NY, USA; Taylor & Francis, Boca Raton, Fla, USA, 2005.
[18]
L. Tognotti, G. Bertozzi, L. Petarca, A. D'Alessio, and E. Benedetti, “Low-temperature oxidation of a bituminous coal: its structural implications,” La Chimica e L'Industria, vol. 70, no. 9, pp. 76–80, 1988.
[19]
L. Tognotti, L. Petarca, A. D'Alessio, and E. Benedetti, “Low temperature air oxidation of coal and its pyridine extraction products. Fourier transform infrared studies,” Fuel, vol. 70, no. 9, pp. 1059–1067, 1991.
[20]
A. D'Alessio and E. Benedetti, “Infrared analysis of the structural changes of Sulcis and other coals under progressive heating,” La Chimica e L'Industria, vol. 66, pp. 689–693, 1984.
[21]
A. Karcz and S. Porada, “The influence of coal rank on formation of gaseous hydrocarbons in hydrogasif ication of coal,” Fuel, vol. 75, no. 5, pp. 641–645, 1996.
[22]
K. Murakami, H. Shirato, and Y. Nishiyama, “In situ infrared spectroscopic study of the effects of exchanged cations on thermal decomposition of a brown coal,” Fuel, vol. 76, no. 7, pp. 655–661, 1997.
[23]
B. J. Meldrum and C. H. Rochester, “Infrared spectra of carbonaceous chars under carbonization and oxidation conditions,” Fuel, vol. 70, no. 1, pp. 57–63, 1991.
[24]
J. B. Ibarra, R. Moliner, and A. J. Bonet, “FT-i.r. investigation on char formation during the early stages of coal pyrolysis,” Fuel, vol. 73, no. 6, pp. 918–924, 1994.
[25]
P. Keliang, X. Wenguo, and Z. Changsui, “Investigation on pyrolysis characteristic of natural coke using thermogravimetric and Fourier-transform infrared method,” Journal of Analytical and Applied Pyrolysis, vol. 80, no. 1, pp. 77–84, 2007.
[26]
S. S. Idris, N. A. Rahman, K. Ismail, A. B. Alias, Z. A. Rashid, and M. J. Aris, “Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA),” Bioresource Technology, vol. 101, no. 12, pp. 4584–4592, 2010.
[27]
R. M. Carangelo, P. R. Solomon, and D. J. Gerson, “Application of TG-FT-IR to study hydrocarbon structure and kinetics,” Fuel, vol. 66, no. 7, pp. 960–967, 1987.
[28]
P. R. Solomon, M. A. Serio, and E. M. Suuberg, “Coal pyrolysis: experiments, kinetic rates and mechanisms,” Progress in Energy and Combustion Science, vol. 18, no. 2, pp. 133–220, 1992.
[29]
I. Pitk?nen, J. Huttunen, H. Halttunen, and R. Vesterinen, “Evolved gas analysis of some solid fuels by TG-FTIR,” Journal of Thermal Analysis and Calorimetry, vol. 56, no. 3, pp. 1253–1259, 1999.
[30]
E. Ekinci, F. Yardim, M. Razvigorova et al., “Characterization of liquid products from pyrolysis of subbituminous coals,” Fuel Processing Technology, vol. 77-78, pp. 309–315, 2002.
[31]
L. Bonfanti, L. Comellas, J. L. Lliberia, R. Vallhonrat-Matalonga, M. Pich-Santacana, and D. López-Pi?ol, “Pyrolysis gas chromatography of some coals by nitrogen and phosphorus, flame ionisation and mass spectrometer detectors,” Journal of Analytical and Applied Pyrolysis, vol. 44, no. 1, pp. 101–119, 1997.
[32]
D. Fabbri, I. Vassura, and C. E. Snape, “Simple off-line flash pyrolysis procedure with in situ silylation for the analysis of hydroxybenzenes in humic acids and coals,” Journal of Chromatography A, vol. 967, no. 2, pp. 235–242, 2002.
[33]
G. Gryglewicz, P. Rutkowski, and J. Yperman, “Characterization of sulfur compounds in supercritical coal extracts by gas chromatography-mass spectrometry,” Fuel Processing Technology, vol. 77-78, pp. 167–172, 2002.
[34]
Q. yang, S. Wu, R. Lou, and G. Lv, “Analysis of wheat straw lignin by thermogravimetry and pyrolysis-gas chromatography/mass spectrometry,” Journal of Analytical and Applied Pyrolysis, vol. 87, no. 1, pp. 65–69, 2010.
[35]
A. D'Alessio, P. Vergamini, and E. Benedetti, “FT-IR investigation of the structural changes of Sulcis and South Africa coals under progressive heating in vacuum,” Fuel, vol. 79, no. 10, pp. 1215–1220, 2000.
[36]
R. H. Perry and C. H. Chilton, Chemical Engineers Handbook, Mc Graw-Hill, New York, NY, USA, 8th edition, 2007.
[37]
D. N. Kendall, Applied Infrared Spectroscopy, Reinhold, New York, NY, USA, 1966.
[38]
M. V. Zeller, Infrared Methods in Air Analysis, Perkin-Elmer Corporation, Eden Prairie, Minn, USA, 2000.
[39]
E. B. Ledesma, C. Li, P. F. Nelson, and J. C. Mackie, “Release of HCN, NH3, and HNCO from the thermal gas-phase cracking of coal pyrolysis tars,” Energy and Fuels, vol. 12, no. 3, pp. 536–541, 1998.
[40]
L. L. Tan and C. Li, “Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part I. Effects of reactor configuration on the determined yields of HCN and NH3 during pyrolysis,” Fuel, vol. 79, no. 15, pp. 1883–1889, 2000.
[41]
R. Bassilakis, Y. Zhao, P. R. Solomon, and M. A. Serio, “Sulfur and nitrogen evolution in the Argonne coals: experiment and modeling,” Energy & Fuels, vol. 7, no. 6, pp. 710–720, 1993.
[42]
T. Maffei, S. Sommariva, E. Ranzi, and T. Faravelli, “A predictive kinetic model of sulfur release from coal,” Fuel, vol. 91, no. 1, pp. 213–223, 2012.
[43]
J. Yan, J. Yang, and Z. Liu, “SH radical: the key intermediate in sulfur transformation during thermal processing of coal,” Environmental Science and Technology, vol. 39, no. 13, pp. 5043–5051, 2005.
[44]
K. Miura, K. Mae, M. Shimada, and H. Minami, “Analysis of formation rates of sulphur-containing gases during the pyrolysis of various coals,” Energy and Fuels, vol. 15, no. 3, pp. 629–636, 2001.
[45]
P. Selsbo, P. Almén, and I. Ericsson, “Quantitative analysis of sulfur in coal by pyrolysis-gas chromatography and multivariate data analysis,” Energy and Fuels, vol. 10, no. 3, pp. 751–756, 1996.
[46]
L. Duan, C. Zhao, W. Zhou, C. Liang, and X. Chen, “Sulfur evolution from coal combustion in O2/CO2 mixture,” Journal of Analytical and Applied Pyrolysis, vol. 86, no. 2, pp. 269–273, 2009.
[47]
G. L. Hu, K. Dam, S. Wedel, and J. P. Hansen, “Decomposition and oxidation of pyrite,” Progress in Energy and Combustion Science, vol. 32, no. 3, pp. 295–314, 2006.
[48]
P. J. Cleyle, W. F. Caley, L. Stewart, and S. G. whiteway, “Decomposition of pyrite and trapping of sulphur in a coal matrix during pyrolysis of coal,” Fuel, vol. 63, no. 11, pp. 1579–1582, 1984.
[49]
M. R. Khan and T. Kurata, “The feasibility of mild gasification of coal: research needs,” 1985, DOE/METC-85/4019, NTIS/DE85013625.
[50]
S. Furfari and R. Cyprès, “Hydropyrolysis of a high-sulphur-high-calcite Italian Sulcis coal. 2. Importance of the mineral matter on the sulphur behaviour,” Fuel, vol. 61, no. 5, pp. 453–459, 1982.
[51]
D. Shao, E. J. Hutchinson, J. Heidbrink, W. Pan, and C. Chou, “Behavior of sulfur during coal pyrolysis,” Journal of Analytical and Applied Pyrolysis, vol. 30, no. 1, pp. 91–100, 1994.
[52]
J. J. Pitt, “Structure analysis of coal,” in Coal and Modern Coal processIng: An Introduction, pp. 27–50, Academic Press, London, UK, 1979.
[53]
C. Poucher, The Aldrich Library of FT-IR Spectra, John Wiley & Sons, New York, NY, USA, 1997.
[54]
V. S. Nguyen, H. L. Abbott, M. M. Dawley, T. M. Orlando, J. Leszczynski, and M. T. Nguyen, “Theoretical study of formamide decomposition pathways,” Journal of Physical Chemistry A, vol. 115, no. 5, pp. 841–851, 2011.