全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tribological Characteristics Improvement of Wear Resistant MAO-Coatings

DOI: 10.1155/2013/262310

Full-Text   Cite this paper   Add to My Lib

Abstract:

Currently, the most promising technology of coating formation is microarc oxidation (MAO) with unique properties of the surface layer, which combine high wear resistance, corrosion resistance, and heat and erosion resistance. Microarc oxidation can be used for parts and components manufacturing in various segments of industries. However, the technology improvement by improving the tribological characteristics of MAO-coatings can not only enhance economic effect, but also expand its application. 1. Introduction Microarc oxidation (MAO) method was achieved in the early 1970s of the 20th century as the result of discovering microarc discharges phenomenon in electrolyte by Markov in the Institute of Inorganic Chemistry [1, 2]. This is quite a new method of improving the surface strength. Coatings with high wear resistance and high adhesive strength to base material can be achieved by this method. The essence of the method is the collaboration of electrochemical oxidation and electrodischarges phenomena at the anode-electrolyte border. The term “microarc oxidation” means electrochemical oxidation of the anode (or detail part) under the voltage higher than the voltage of sparking. The most important advantages of the method include(i)coating deposition without any pretreatment (grinding, degreasing, pickling, etc.), which significantly reduces the cost and complexity of work;(ii)the possibility of coating figurine details (including internal and threaded surfaces, hidden cavities);(iii)coating formation with thickness from 0.05 to 0.2?mm and 0.3 to 1.0?mm and adhesion, comparable to the strength of the base material;(iv)significant oxidation process time reduction (2–2.5 times) in comparison with thick anodizing;(v)the possibility of full process automation; (vi)cheapness and availability of reagents and materials; (vii)wide range of process speed regulations; (viii)environmental friendliness of the process (does not require the use of special sewage treatment plants). Microarc oxidation is mainly used for valve metals. The composition of MAO-coatings is a complex of aluminum oxides, including high-temperature phase (α-Al2O3) as well as element compounds which are included in the base material and the electrolyte. Today, ceramic coatings are widely used on aluminum alloys. The driving force behind this has been the high chemical affinity for oxygen and the unique properties of Al2O3 oxide. Among the positive qualities of aluminum alloys, their lightness, high relative strength, high corrosion resistance, cold resistance, good weld ability, and high

References

[1]  Microarc Oxidation, The Science and Humanity, Znanie, Moscow, Russia, 1981.
[2]  G. A. Markov, V. I. Belevantsev, O. P. Terleeva, E. K. Shulepko, and A. I. Slonova, “Microarc oxidation,” Vestnik Mashinostroeniya, vol. 1, series 6, p. 34, 1992.
[3]  A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, “Plasma electrolysis for surface engineering,” Surface and Coatings Technology, vol. 122, no. 2-3, pp. 73–93, 1999.
[4]  A. L. Yerokhin, L. O. Snizhko, N. L. Gurevina, A. Leyland, A. Pilkington, and A. Matthews, “Discharge characterization in plasma electrolytic oxidation of aluminium,” Journal of Physics D, vol. 36, no. 17, pp. 2110–2120, 2003.
[5]  A. A. Petrosyants, V. N. Malyshev, V. A. Fedorov, and G. A. Markov, “Wear kinetics of coatings deposited by microarc oxidation,” Trenie i Iznos, vol. 5, no. 2, pp. 127–130, 1984 (Russian).
[6]  V. N. Malyshev, “Coating formation by anodic-cathodic microarc oxidation,” Zashchita Metallov, vol. 32, no. 6, pp. 662–667, 1996 (Russian).
[7]  V. N. Malyschev, “Mikrolichtbogen-Oxidation-ein neuartiges Verfahren zur Verfestigung von Aluminiumoberflaechen,” Metalloberflaech, no. 8, pp. S606–S608, 1995.
[8]  I. N. Andreeva, E. V. Veselovskaya, E. I. Nalivayko, A. D. Pechenkin, V. I. Buchgalter, and A. V. Polyakov, “Ultrahigh molecular weight polyethylene with high density,” L: Chimia, p. 40, 1982 (Russian).
[9]  V. N. Malyshev, “Neue Anwendungsmoeglichkeiten fuer Aluminium,” Metalloberflaeche, no. 1-2, pp. S28–S29, 2006.
[10]  S. V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya et al., “Production of hard and heat-resistant coatings on aluminium using a plasma micro-discharge,” Surface and Coatings Technology, vol. 123, no. 1, pp. 24–28, 2000.
[11]  G. Sundararajan and L. Rama Krishna, “Mechanisms underlying the formation of thick alumina coatings through the MAO-coating technology,” Surface and Coatings Technology, vol. 167, no. 2-3, pp. 269–277, 2003.
[12]  J. A. Curran and T. W. Clyne, “Porosity in plasma electrolytic oxide coatings,” Acta Materialia, vol. 54, no. 7, pp. 1985–1993, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133