全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Studies on Nanocomposite Conducting Coatings

DOI: 10.1155/2013/260638

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nanocomposite conducting coatings can impart stable surface electrical conductivity on the substrate. In this paper, carbon nanofiber (CNF) and nanographite (NG) are dispersed in thermoplastic polyurethane matrix and coated on the surface of glass and polyethylene terephthalate (PET) film. The nanoparticles dispersion was studied under TEM. The coating thicknesses were estimated. Further, their resistance and impedance were measured. It has been observed that the 5?wt% CNF dispersed nanocomposite coatings show good conductivity. The use of NG can bring down the amount of CNF; however, NG alone has failed to show significant improvement in conductivity. The nanocomposite coating on PET film using 2.5?wt% of both CNF and NG gives frequency-independent impedance which indicates conducting network formation by the nanoparticles. The study was carried out at different test distances on nanocomposite coated PET films to observe the linearity and continuity of the conducting network, and the result shows reasonable linearity in impedance over total test length (from 0.5?cm to 4.5?cm). The impedance of nanocomposite coatings on glass is not frequency independent and also not following linear increase path with distance. This indicates that the dispersion uniformity is not maintained in the coating solution when it was coated on glass. 1. Introduction Conducting coatings are essentially required for conducting, sensing, and actuating purposes mostly in biomedical, defense, and printed electronics applications. Several classes of conducting coatings exist in the market such as metallic, ceramic, carbon, and electroactive polymers. Conducting coatings are also used for applications like static charge control, electromagnetic pollution control, electromagnetic interference shielding, and so forth, [1]. Among the electroactive and conducting polymers, except for polyaniline, other conducting polymers such as polypyrrole and polythiophene are insoluble in common solvent and thus offer less choice in processing. However, electrochemical deposition and vapor phase polymerization of organic conducting polymers have been carried out on almost all surfaces which give significant rise in conductivity and electroactivity [2, 3]. The limitations of conducting polymers and metal deposition can be overcome using nanocomposite coatings in this field. Nanocomposite coatings may be advantageous over a single metal or conducting polymer coating as this possesses several features like durability, flexibility, and stability on environmental exposure. Suitable nanocomposite coating

References

[1]  R. Liepins, “Conductive coatings,” in Coating Technology Handbook, D. Satas and A. A. Tracton, Eds., pp. 91-1–91-9, 2006.
[2]  K. S. Jang and J. D. Nam, “Synchronous vapor-phase coating of conducting polymers for flexible optoelectronic applications,” in Optoelectronic Devices and Properties, O. Sergiyenko, Ed., pp. 151–170, 2011.
[3]  K. Gurunathan, A. V. Murugan, R. Marimuthu, U. P. Mulik, and D. P. Amalnerkar, “Electrochemically synthesized conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices,” Materials Chemistry and Physics, vol. 61, no. 3, pp. 173–191, 1999.
[4]  M. Joshi and A. Bhattacharyya, “Nanotechnology—a new route to high-performance functional textiles,” Textile Progress, vol. 43, no. 3, pp. 155–233, 2011.
[5]  S.-D. Lee, O.-J. Kwon, B. C. Chun, J. W. Cho, and J.-S. Park, “Effects of mechanical strain on the electric conductivity of multiwalled carbon nanotube (MWCNT)/polyurethane (PU) composites,” Fibers and Polymers, vol. 10, no. 1, pp. 71–76, 2009.
[6]  X. Chen, S. Wei, A. Yadav et al., “Poly(propylene)/carbon nanofiber nanocomposites: ex situ solvent-assisted preparation and analysis of electrical and electronic properties,” Macromolecular Materials and Engineering, vol. 296, no. 5, pp. 434–443, 2011.
[7]  A. Bhattacharyya and M. Joshi, “Functional properties of microwave-absorbent nanocomposite coatings based on thermoplastic polyurethane-based and hybrid carbon-based nanofillers,” Polymers for Advanced Technologies, vol. 23, no. 6, pp. 975–983, 2012.
[8]  A. Bhattacharyya and M. Joshi, “Development of polyurethane based conducting nanocomposite fibers via twin screw extrusion,” Fibers and Polymers, vol. 12, no. 6, pp. 734–740, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133