全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Properties of TiC Coating by Pulsed DC PACVD

DOI: 10.1155/2013/712812

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the PACVD technique, temperature and gas flow rate are two important parameters affecting the coating characteristics. Effect of these parameters on mechanical behaviors of TiC coating that was deposited on hot work tool steel (H13) was investigated in this paper. We analyzed TiC coating composition and structure with grazing incidence X-ray diffraction (GIXRD) and Fourier transformation infrared spectroscopy (FTIR). The mechanical properties of the coatings, such as microhardness, wear resistance, and surface roughness, were studied with Knoop hardness indentation, pin on disk wear tests, and atomic force microscopy, respectively. When the deposition temperature decreased from 490°C to 450°C and the CH4 to TiCl4 flow rate ratio was also increased from 1.5 to 6, TiC coating color changed from dark gray to silver. The best mechanical properties such as a high hardness (27?GPa), wear resistance, and low surface roughness were related to the coating that was deposited at 450°C. 1. Introduction Hard coatings such as titanium carbide (TiC) and titanium nitrocarbide (TiCN) have been used in various industries such as microelectronics and aerospace due to the unique properties such as high hardness and Young’s modulus, low friction coefficient, proper resistance to corrosion and wear, good electrical and thermal conductivity, and high melting temperature [1–3]. Thin and hard coatings can be deposited by different methods such as physical vapor and thermal chemical vapor techniques. In the first method due to the low temperature, the coatings adhesion strength decreases and in the second method, due to low deposition rate, the cost waste and the time waste occur [4]. Thus, plasma assisted chemical vapor deposition (PACVD) can be a proper technique for depositing thin coatings on different substrates, due to possibility to achieve the same properties in lower temperatures and higher deposition rate. Controlling the composition and the thickness of coatings by adjusting plasma parameters is easy. Additionally, rotating of the complex sample is not necessary [4–6]. Thus, PACVD is used to deposit various coatings for casting and extruding mold even with irregular geometry and complexity [7]. In TiC coating deposition via PACVD technique, the temperature, plasma power, duty cycle, and CH4 and TiCl4 flux rates are the fundamental parameters, because the amount of excess carbon is a very effective factor on the coating properties. It was shown by Stock et al., in 1998, that increasing the level of excess carbon can decrease coating hardness [4, 8, 9]. It is

References

[1]  H. Liepack, K. Bartsch, W. Brückner, and A. Leonhardt, “Mechanical behavior of PACVD TiC-amorphous carbon composite layers,” Surface and Coatings Technology, vol. 183, no. 1, pp. 69–73, 2004.
[2]  N. Kumar, R. Krishnan, D. Dinesh Kumar, S. Dash, and A. K. Tyagi, “Tribological properties of nanostructured TiC coatings deposited on steel and silicon substrates using pulse laser deposition technique,” Tribology, vol. 5, no. 1, pp. 1–9, 2011.
[3]  A. Shanaghi, A. R. S. Rouhaghdam, S. Ahangarani, P. K. Chu, and T. S. Farahani, “Effects of duty cycle on microstructure and corrosion behavior of TiC coatings prepared by DC pulsed plasma CVD,” Applied Surface Science, vol. 258, no. 7, pp. 3051–3057, 2012.
[4]  D.-J. Kim, Y.-R. Cho, M.-J. Lee, J.-M. Hong, Y.-K. Kim, and K.-H. Lee, “Properties of TiN-TiC multilayer coatings using plasma-assisted chemical vapor deposition,” Surface and Coatings Technology, vol. 116–119, pp. 906–910, 1999.
[5]  A. Shanaghi, A. Sabour Rouhaghdam, S. Ahangarani, and P. K. Chu, “Effect of plasma CVD operating temperature on nanomechanical properties of TiC nanostructured coating investigated by atomic force microscopy,” Research Bulletin, vol. 47, pp. 2200–2206, 2012.
[6]  H. L. Wang, J. L. He, and M. H. Hon, “Sliding wear resistance of TiCN coatings on tool steel made by plasma-enhanced chemical vapour deposition,” Wear, vol. 169, no. 2, pp. 195–200, 1993.
[7]  K. Kawata, H. Sugimura, and O. Takai, “Effects of chlorine on tribological properties of TiN films prepared by pulsed d.c. plasma-enhanced chemical vapor deposition,” Thin Solid Films, vol. 407, no. 1-2, pp. 38–44, 2002.
[8]  T. Arai, H. Fujita, and K. Oguri, “Plasma-assisted chemical vapour deposition of TiN and TiC on steel: properties of coatings,” Thin Solid Films, vol. 165, no. 1, pp. 139–148, 1988.
[9]  C. Jarms, H.-R. Stock, H. Berndt, K. Bartsch, A. Leonhardt, and B. Arnold, “Influence of the PACVD process parameters on the properties of titanium carbide thin films,” Surface and Coatings Technology, vol. 98, no. 1–3, pp. 1547–1552, 1998.
[10]  S. Ma, Y. Li, and K. Xu, “The composite of nitrided steel of H13 and TiN coatings by plasma duplex treatment and the effect of pre-nitriding,” Surface and Coatings Technology, vol. 137, no. 2-3, pp. 116–121, 2001.
[11]  R. D. Torres, P. C. Soares Jr., C. Schmitz, and C. J. M. Siqueira, “Influence of the nitriding and TiAlN/TiN coating thickness on the sliding wear behavior of duplex treated AISI H13 steel,” Surface and Coatings Technology, vol. 205, no. 5, pp. 1381–1385, 2010.
[12]  N. J. Archer, “The plasma assisted chemical vapor deposition of TiC, TiN and, TiCN,” Thin Solid Films, vol. 80, no. 1, pp. 221–225, 1981.
[13]  A. F. G. Tan der Meer, “FELs, nice toys or efficient tools?” Nuclear Instruments and Method in Physics Research A, vol. 528, pp. 8–14, 2006.
[14]  K. Oguri and T. Arai, “Friction coefficient of SiC, TiC and GeC coatings with excess carbon formed by plasma-assisted chemical vapour deposition,” Thin Solid Films, vol. 208, no. 2, pp. 158–160, 1992.
[15]  J. A. Avila and H. E. Jaramillo, “Synthesis and characterization of aluminum titanium carbonitride TiAlCN via mechanical alloying,” Journal of Scientific and Industrial Research, vol. 69, no. 10, pp. 773–776, 2010.
[16]  K. Holmberg, A. Matthews, and H. Ronkainen, “Coatings tribology—contact mechanisms and surface design,” Tribology International, vol. 31, no. 1–3, pp. 107–120, 1998.
[17]  J. Lee, K. Euh, J. C. Oh, and S. Lee, “Microstructure and hardness improvement of TiC/stainless steel surface composites fabricated by high-energy electron beam irradiation,” Materials Science and Engineering A, vol. 323, no. 1-2, pp. 251–259, 2002.
[18]  J. Pirso, M. Viljus, and S. Letunovits, “Sliding wear of TiC-NiMo cermets,” Tribology International, vol. 37, no. 10, pp. 817–824, 2004.
[19]  J. Tang, J. S. Zabinski, and J. E. Bultman, “TiC coatings prepared by pulsed laser deposition and magnetron sputtering,” Surface and Coatings Technology, vol. 91, no. 1-2, pp. 69–73, 1997.
[20]  D. G. Liu, J. P. Tu, C. D. Gu, R. Chen, and C. F. Hong, “Tribological and mechanical behaviors of TiN/CNx multilayer films deposited by magnetron sputtering,” Thin Solid Films, vol. 519, no. 15, pp. 4842–4848, 2011.
[21]  A. S. Kumar, A. R. Durai, and T. Sornakumar, “Wear behaviour of alumina based ceramic cutting tools on machining steels,” Tribology International, vol. 39, no. 3, pp. 191–197, 2006.
[22]  J. Vleugels, “Fabrication, wear, and performance of ceramic cutting tools,” Advances in Science and Technology, vol. 45, pp. 1776–1785, 2006.
[23]  T.-H. Fang, S.-R. Jian, and D.-S. Chuu, “Nanomechanical properties of TiC, TiN and TiCN thin films using scanning probe microscopy and nanoindentation,” Applied Surface Science, vol. 228, no. 1–4, pp. 365–372, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133