The present experimental investigation deals with the deposition of electroless Ni-P-W coating on mild steel substrate and optimization of tribological parameters for better tribological behaviour like minimization of wear depth and coefficient of friction. Three tribological test parameters, namely, load, speed, and time, are optimized for minimum friction and wear of the coating. Friction and wear tests are carried out in a multitribotester using block on roller configuration under dry conditions. Taguchi based grey relational analysis is employed for optimization of this multiple response problem using L27 orthogonal array. Analysis of variance shows that load, speed, time, and interaction between load and speed have significant influence on controlling the friction and wear behavior of Ni-P-W coating. It is observed that wear mechanism is mild adhesive in nature. The structural morphology, composition, and phase structure of the coating are studied with the help of scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and X-ray diffraction analysis (XRD), respectively. 1. Introduction Most of the engineering components undergo rubbing action due to which wear takes place on the surface of the components and become useless after a certain period. Life and performance of these engineering components can be extended by applying hard coatings over the surface of the components. The thickness of coatings ranged between 10 and 500?μm and their rates of deposition can provide the required product quality at relatively low capital and operating costs. Among the various metallic coating procedures based on aqueous solutions, most metals are electroplated since electroplating is technically straightforward and less expensive than electroless (autocatalytic) deposition. On the other hand, electroless deposition is of industrial importance mainly for copper, nickel, and some nickel based alloys. Industrial use of electroless deposition method continues to increase due to its good anticorrosion, antifriction, and wear protection properties. Electroless method has several advantages over electroplating technique, except for the life of the bath. The advantages include the quality of the deposit, namely, the physical and mechanical properties. In this process, a sharp edge receives the same thickness of deposit as a blind hole does and it offers extremely bright deposits, which are comparable with electroplated ones. The desirable properties can be varied by choosing different pH, temperature, and composition of the bath. Electroless nickel
References
[1]
A. Brenner and G. E. Riddell, “Nickel coating on steel by chemical reduction,” Journal of Research of National Bureau of Standards, vol. 37, no. 1, pp. 31–34, 1946.
[2]
G. O. Mallory and J. B. Hadju, Electroless Plating: Fundamentals and Applications, AESF, Orlando, Fla, USA, 1991.
[3]
W. Riedel, Electroless Plating, ASM International, Materials Park, Ohio, USA, 1991.
[4]
P. Sahoo and S. K. Das, “Tribology of electroless nickel coatings—a review,” Materials and Design, vol. 32, no. 4, pp. 1760–1775, 2011.
[5]
P. Sahoo, “Wear behaviour of electroless Ni-P coatings and optimization of process parameters using Taguchi method,” Materials and Design, vol. 30, no. 4, pp. 1341–1349, 2009.
[6]
S. K. Das and P. Sahoo, “Tribological characteristics of electroless Ni-B coating and optimization of coating parameters using Taguchi based grey relational analysis,” Materials and Design, vol. 32, no. 4, pp. 2228–2238, 2011.
[7]
S.-K. Tien, J.-G. Duh, and Y. I. Chen, “The influence of thermal treatment on the microstructure and hardness in electroless Ni-P-W deposit,” Thin Solid Films, vol. 469-470, pp. 333–338, 2004.
[8]
Y.-J. Hu, T.-X. Wang, J.-L. Meng, and Q.-Y. Rao, “Structure and phase transformation behaviour of electroless Ni-W-P on aluminium alloy,” Surface and Coatings Technology, vol. 201, no. 3-4, pp. 988–992, 2006.
[9]
R. C. Agarwala and V. Agarwala, “Electroless alloy/composite coatings: a review,” Sadhana, vol. 28, pp. 3475–3493, 2003.
[10]
F. Pearlstein, R. F. Weightman, and R. Wick, Metal Finishing, vol. 61, pp. 77–81, 1963.
[11]
M. Palaniappa and S. K. Seshadri, “Friction and wear behavior of electroless Ni-P and Ni-W-P alloy coatings,” Wear, vol. 265, no. 5-6, pp. 735–740, 2008.
[12]
H. Liu, R. X. Guo, and Z. Liu, “Effects of laser nanocrystallisation on the wear behaviour of electroless Ni-W-P coatings,” Surface & Coatings Technology, vol. 219, pp. 31–41, 2013.
[13]
F.-B. Wu, Y.-I. Chen, P.-J. Peng, Y.-Y. Tsai, and J.-G. Duh, “Fabrication, thermal stability and microhardness of sputtered Ni-P-W coating,” Surface and Coatings Technology, vol. 150, no. 2-3, pp. 232–238, 2002.
[14]
Y.-Y. Tsai, F.-B. Wu, Y.-I. Chen, P.-J. Peng, J.-G. Duh, and S.-Y. Tsai, “Thermal stability and mechanical properties of Ni-W-P electroless deposits,” Surface and Coatings Technology, vol. 146-147, pp. 146–147, 2001.
[15]
F. B. Wu, S. K. Tien, W. Y. Chen, and J. G. Duh, “Microstructure evaluation and strengthening mechanism of Ni-P-W alloy coatings,” Surface and Coatings Technology, vol. 177-178, pp. 312–316, 2004.
[16]
S.-K. Tien and J.-G. Duh, “Thermal reliability of electroless Ni-P-W coating during the aging treatment,” Thin Solid Films, vol. 469-470, pp. 268–273, 2004.
[17]
W.-Y. Chen, S.-K. Tien, F.-B. Wu, and J.-G. Duh, “Crystallization behaviors and microhardness of sputtered Ni-P, Ni-P-Cr and Ni-P-W deposits on tool steel,” Surface and Coatings Technology, vol. 182, no. 1, pp. 85–91, 2004.
[18]
J. N. Balaraju and K. S. Rajam, “Electroless deposition of Ni-Cu-P, Ni-W-P and Ni-W-Cu-P alloys,” Surface and Coatings Technology, vol. 195, no. 2-3, pp. 154–161, 2005.
[19]
J. N. Balaraju, C. Anandan, and K. S. Rajam, “Influence of codeposition of copper on the structure and morphology of electroless Ni-W-P alloys from sulphate- and chloride-based baths,” Surface and Coatings Technology, vol. 200, no. 12-13, pp. 3675–3681, 2006.
[20]
C. Xiao-ming, L. I. Guang-yu, and L. Jian-she, “Deposition of electroless Ni-P/Ni-W-P duplex coatings on AZ91D magnesium alloy,” Transactions of Nonferrous Metals Society of China, vol. 18, no. 1, pp. s323–s328, 2008.
[21]
H. Liu, R.-X. Guo, Y. Zong, B.-Q. He, and Z. Liu, “Comparative study of microstructure and corrosion resistance of electroless Ni-W-P coatings treated by laser and furnace-annealing,” Transactions of Nonferrous Metals Society of China, vol. 20, no. 6, pp. 1024–1031, 2010.
[22]
J. N. Balaraju, S. M. Jahan, and K. S. Rajam, “Studies on autocatalytic deposition of ternary Ni-W-P alloys using nickel sulphamate bath,” Surface and Coatings Technology, vol. 201, no. 3-4, pp. 507–512, 2006.
[23]
J. N. Balaraju, S. Millath Jahan, C. Anandan, and K. S. Rajam, “Studies on electroless Ni-W-P and Ni-W-Cu-P alloy coatings using chloride-based bath,” Surface and Coatings Technology, vol. 200, no. 16-17, pp. 4885–4890, 2006.
[24]
R. K. Roy, A Primer on the Taguchi Method, Society of Manufacturing Engineers, Dearborn, Mich, USA, 1990.
[25]
J. Deng, “Nucleus less-data series grey modeling,” Journal of Grey System, vol. 1, no. 1, pp. 1–24, 1989.
[26]
S. K. Das and P. Sahoo, “Wear performance optimization of electroless Ni-B coating using Taguchi design of experiments,” Tribology in Industry, vol. 32, no. 4, pp. 17–27, 2010.
[27]
D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New York, NY, USA, 2001.
[28]
Minitab User Manual (Release 13. 2). Making Data Analysis Easier, MINITAB, State College, Pa, USA, 2001.