全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Differences in the Intraseasonal Rainfall Variability between Western and Eastern Central Africa: Case of 10–25-Day Oscillations

DOI: 10.1155/2014/434960

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we analyze the space-time structures of the 10–25 day intraseasonal variability of rainfall over Central Africa (CA) using 1DD GPCP rainfall product for the period 1996–2009, with an emphasis on the comparison between the western Central Africa (WCA) and the eastern Central Africa (ECA) with different climate features. The results of Empirical Orthogonal Functions (EOFs) analysis have shown that the amount of variance explained by the leading EOFs is greater in ECA than WCA (40.6% and 48.1%, for WCA and ECA, resp.). For the two subregions, the power spectra of the principal components (PCs) peak around 15 days, indicating a biweekly signal. The lagged cross-correlations computed between WCA and ECA PCs time series showed that most of the WCA PCs lead ECA PCs time series with a time scale of 5–8 days. The variations of Intraseasonal Oscillations (ISO) activity are weak in WCA, when compared with ECA where the signal exhibits large annual and interannual variations. Globally, the correlation coefficients computed between ECA and WCA annual mean ISO power time series are weak, revealing that the processes driving the interannual modulation of ISO signal should be different in nature or magnitude in the two subregions. 1. Introduction The monitoring and prediction of climate in the tropics remain a crucial problem in the scientific community. It is well-known that many regions in the tropics are vulnerable to climate change because their resources are highly rainfall dependent. Amongst these regions, Central Africa (CA) is particularly vulnerable because the majority of its population is rural and practice rain-fed agriculture [1]. A strong rainfall intensity can result in devastating floods, whereas a weak rainfall is usually associated with droughts, thus affecting living conditions and the economy of the densely populated region in many sectors such as agriculture, livestock, and energy [2, 3]. The CA extends from 15°S to 15°N and 0–50°E mainly over the land and part of Atlantic and Indian Oceans on its edges (Figure 1). The topography of the region is quite various, including highlands, mountains, and Plateaus. The western part (15°S–15°N; 0–30°E) is consisting of the zones of intense precipitation, especially over the Congo Basin [4]. Some of the highest rainfall totals are reported over Mountain Cameroon, at its western edge, where mean annual rainfall exceeds 10 meters. The Congo basin was proven to experience one of the world’s most intense thunderstorms and highest frequency of lightning flashes [5, 6]. The western central Africa is

References

[1]  UNEP DEWA/PAN-AFRICAN START, “Vulnerability of water resources to environmental change in Africa,” River Basin Approach, UNEP, 2004.
[2]  T. James and P. Karl, “Economic losses and poverty effects of droughts and floods in Malawi,” OER Africa, 2009.
[3]  P. Dierk, M. Charles, and H. Stefan, “Diagnosing the droughts and floods in equatorial east Africa during boreal autumn 2005–08,” Journal of Climate, vol. 23, no. 3, pp. 813–817, 2010.
[4]  A. S. Tchakoutio, A. Nzeukou, and C. Tchawoua, “Intraseasonal atmospheric variability and its interannual modulation in Central Africa,” Meteorology and Atmospheric Physics, vol. 117, no. 3-4, pp. 167–179, 2012.
[5]  E. J. Zipser, D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, “Where are the most intense thunderstorms on earth?” Bulletin of the American Meteorological Society, vol. 87, no. 8, pp. 1057–1071, 2006.
[6]  G. Hong and G. Heygster, “Intense tropical thunderstorms detected by the special sensor microwave imager/sounder,” IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 4, pp. 996–1005, 2008.
[7]  M. Thomas, C. H. C. John, G. Alexander, and J. C. Nicolas, “Temporal precipitation variability versus altitude on a tropical high mountain: observations and mesoscale atmospheric modelling,” Quarterly Journal of the Royal Meteorological Society, vol. 135, no. 643, pp. 1439–1455, 2009.
[8]  A. M. Moore, J. P. Loschnigg, P. J. Webster, and R. R. Leben, “Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98,” Nature, vol. 401, no. 6751, pp. 356–360, 1999.
[9]  C. Mutai, S. Hastenrath, and D. Polzin, “Diagnosing the 2005 drought in equatorial East Africa,” Journal of Climate, vol. 20, no. 18, pp. 4628–4637, 2007.
[10]  R. A. Madden and P. R. Julian, “Description of global-scale circulation cells in the tropics with a 40–50 day period,” Journal of the Atmospheric Sciences, vol. 29, pp. 1109–1123, 1972.
[11]  T. Yamagata and Y. Hayachi, “A simple diagnostic model for the 30–50 days oscillation in the tropics,” Journal of the Meteorological Society of Japan, vol. 62, no. 5, pp. 709–717, 1984.
[12]  B. Sultan and S. Janicot, “Intra-seasonal modulation of convection in the West African monsoon,” Geophysical Research Letters, vol. 28, no. 3, pp. 523–526, 2001.
[13]  B. Sultan and S. Janicot, “The West African monsoon dynamics—part II: the pre-onset and onset of the summer monsoon,” Journal of Climate, vol. 16, pp. 3407–3427, 2003.
[14]  S. Janicot and F. Mounier, “Evidence of two independent modes of convection at intraseasonal timescale in the West African summer monsoon,” Geophysical Research Letters, vol. 31, no. 16, Article ID L16116, 2004.
[15]  R. W. Higgins, D. E. Waliser, J.-K. E. Schemm, C. Jones, and L. M. V. Carvalho, “Climatology of tropical intraseasonal convective anomalies: 1979–2002,” Journal of Climate, vol. 17, no. 3, pp. 523–539, 2004.
[16]  P. Camberlin and P. Benjamin, “Influence of the Madden-Julian oscillation on East African rainfall—I: intraseasonal variability and regional dependency,” Quarterly Journal of the Royal Meteorological Society, vol. 132, no. 621, pp. 2521–2539, 2006.
[17]  L. Tazalika and M. R. Jury, “Intra-seasonal rainfall oscillations over central Africa: space-time character and evolution,” Theoretical and Applied Climatology, vol. 94, no. 1-2, pp. 67–80, 2008.
[18]  M. R. Jury and C. Hector, “Intraseasonal variability of satellite-derived rainfall and vegetation over Southern Africa,” Earth Interactions, vol. 14, no. 3, pp. 1–26, 2010.
[19]  A. S. Tchakoutio, A. Nzeukou, C. Tchawoua, F. M. Kamga, and D. Vondou, “A comparative analysis of intraseasonal variability in OLR and 1DD GPCP data over central Africa,” Theoretical and Applied Climatology, vol. 116, no. 1-2, pp. 37–49, 2014.
[20]  A. S. Tchakoutio, A. Nzeukou, C. Tchawoua, B. Sonfack, and T. Siddi, “Comparing the patterns of 20–70 days intraseasonal oscillations over Central Africa during the last three decades,” Theoretical and Applied Climatology, 2013.
[21]  D. L. Gilman, F. J. Fuglister, and J. M. Mitchell, “On the power spectrum of ‘red noise’,” Journal of the Atmospheric Sciences, vol. 20, no. 2, pp. 182–184, 1963.
[22]  G. J. Huffman, M. Morrissey, D. Bolvin et al., “Global precipitation at one degree daily resolution from multisatellite observations,” Journal of Hydrometeorology, vol. 2, pp. 36–50, 2001.
[23]  R. F. Adler, “The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present),” Journal of Hydrometeorology, vol. 4, pp. 1147–1167, 2003.
[24]  P. A. Arkin and B. N. Meisner, “The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84,” Monthly Weather Review, vol. 115, no. 1, pp. 51–74, 1987.
[25]  J. McCollum, E. Nelkin, D. Klotter et al., “Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa—part I: validation of GPCC rainfall product and pre-TRMM satellite and blended products,” Journal of Applied Meteorology, vol. 42, no. 10, pp. 1337–1354, 2003.
[26]  T. Dinku, P. Ceccato, E. Grover-Kopec, M. Lemma, S. J. Connor, and C. F. Ropelewski, “Validation of satellite rainfall products over East Africa's complex topography,” International Journal of Remote Sensing, vol. 28, no. 7, pp. 1503–1526, 2007.
[27]  F. Ruiz, T. Dinku, S. J. Connor, and P. Ceccato, “Validation and intercomparison of satellite rainfall estimates over Colombia,” Journal of Applied Meteorology and Climatology, vol. 49, no. 5, pp. 1004–1014, 2010.
[28]  C. Lanczos, Applied Analysis, Prentice-Hall, 1956.
[29]  C. E. Duchon, “Lanczos filtering in one and two dimensions,” Journal of Applied Meteorology, vol. 18, no. 8, pp. 1016–1022, 1979.
[30]  C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bulletin of the American Meteorological Society, vol. 79, no. 1, pp. 61–78, 1998.
[31]  K. M. Weickmann and T. R. Knuston, “30–60 day atmospheric oscillations: composite life cycle of convection and circulation anomalies,” Monthly Weather Review, vol. 115, no. 7, pp. 1407–1436, 1987.
[32]  H. H. Harry and Z. Chindong, “Propagating and standing components of the intraseasonal oscillation in tropical convection,” Journal of the Atmospheric Sciences, vol. 54, pp. 741–751, 1996.
[33]  A. J. Matthews, “Intraseasonal variability over tropical Africa during northern summer,” Journal of Climate, vol. 17, no. 12, pp. 2427–2440, 2004.
[34]  E. D. Maloney and S. Jeffrey, “Intraseasonal variability of the West African monsoon and Atlantic ITCZ,” Journal of Climate, vol. 21, no. 12, pp. 2898–2918, 2008.
[35]  H. Rui and B. Wang, “Development characteristics and dynamic structure of tropical intraseasonal convection anomalies,” Journal of the Atmospheric Sciences, vol. 47, no. 3, pp. 357–379, 1990.
[36]  R. B. Cattell, “The scree test for the number of factors,” Multivariate Behavioral Research, vol. 1, no. 2, pp. 245–276, 1966.
[37]  G. R. North, T. L. Bell, R. F. Cahalan, and F. J. Moeng, “Sampling errors in the estimation of empirical orthogonal functions,” Monthly Weather Review, vol. 110, no. 7, pp. 699–6706, 1982.
[38]  H. H. Hendon, C. Zhang, and J. D. Glick, “Interannual variation of the Madden-Julian oscillation during austral summer,” Journal of Climate, vol. 12, no. 8, pp. 2538–2550, 1999.
[39]  J. M. Slingo, D. P. Rowell, K. R. Sperber, and F. Nortley, “On the predictability of the interannual behaviour of the Madden-Julian oscillation and its relationship with El Ni?o,” Quarterly Journal of the Royal Meteorological Society, vol. 125, no. 554, pp. 583–609, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133