The interest in lycopene has increased in recent years due to studies that associate it with the reduction in risk of developing cardiovascular diseases and cancer. However, due to its high degree of unsaturation, this carotenoid is inclined to isomerize and oxidize during processing and storage, making it difficult to use in the food industry. Microencapsulation can improve this situation, increasing its stability and making incorporation into food formulations possible. Thus, the aim of this study was to microencapsulate lycopene by complex coacervation using gelatin and gum Arabic as the encapsulating agents. The microcapsules were evaluated based on the encapsulation efficiency and their morphology and then submitted to a stability test and applied in cake making. Most of the systems studied presented spherical microcapsules with defined walls. The encapsulation efficiency values were above 90%, and the average diameter of the capsules ranged from 61 to 144?μm. The stability test showed that microencapsulation offered greater protection to the lycopene as compared to its free form. The application of nonfreeze dried coacervated microcapsules in cake making was satisfactory, but the color transference was low when freezedried coacervated microcapsules were used. 1. Introduction Lycopene is a carotenoid that can be incorporated into foods with the purposes of conferring both color and functional characteristics, but it is quite susceptible to isomerization and oxidation [1]. A possible solution to this problem could be the use of microencapsulation, which is the most widely used technique to increase the stability of carotenoids [2]. Complex coacervation consists of spontaneous phase separation by forming an insoluble complex between two or more polymers as a result of electrostatic interactions. The composition and concentration of the wall polymer and environmental conditions such as the pH and ionic strength, amongst others, are directly related to the efficiency of microcapsule production and to the variability in structure, size, and porosity, amongst other characteristics [3]. Microcapsules produced by coacervation are heat-resistant, possessing excellent controlled-release characteristics based on mechanical stress, temperature, and sustained release [4]. Matioli and Rodriguez-Amaya [1] encapsulated lycopene by freeze drying and spray drying methods. The encapsulating agents were gum Arabic and the gum Arabic/maltodextrin pair. The longest half-life time was found for the lycopene encapsulated in gum Arabic and maltodextrin by the freeze drying
References
[1]
G. Matioli and D. B. Rodriguez-Amaya, “Licopeno encapsulado em goma arábica e maltodextrina: estudo da estabilidade,” Brazilian Journal of Food Technology, vol. 5, pp. 197–203, 2002.
[2]
I. L. Nunes and A. Z. Mercadante, “Encapsulation of lycopene using spray-drying and molecular inclusion processes,” Brazilian Archives of Biology and Technology, vol. 50, no. 5, pp. 893–900, 2007.
[3]
Y. Yeo, E. Bellas, W. Firestone, R. Langer, and D. S. Kohane, “Complex coacervates for thermally sensitive controlled release of flavor compounds,” Journal of Agricultural and Food Chemistry, vol. 53, no. 19, pp. 7518–7525, 2005.
[4]
Z. Dong, Y. Ma, K. Hayat, C. Jia, S. Xia, and X. Zhang, “Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation,” Journal of Food Engineering, vol. 104, no. 3, pp. 455–460, 2011.
[5]
G. Matioli and D. B. Rodriguez-Amaya, “Microencapsula??o do licopeno com cilclodextrinas,” Ciência e Tecnologia de Alimentos, vol. 23, pp. 102–105, 2003.
[6]
G. P. Blanch, M. L. R. del Castillo, M. M. Caja, M. Pérez-Méndez, and S. Sánchez-Cortés, “Stabilization of all-trans-lycopene from tomato by encapsulation using cyclodextrins,” Food Chemistry, vol. 105, no. 4, pp. 1335–1341, 2007.
[7]
B. Shu, W. Yu, Y. Zhao, and X. Liu, “Study on microencapsulation of lycopene by spray-drying,” Journal of Food Engineering, vol. 76, no. 4, pp. 664–669, 2006.
[8]
G. A. Rocha, C. S. Fávaro-Trindade, and C. R. F. Grosso, “Microencapsulation of lycopene by spray drying: characterization, stability and application of microcapsules,” Food and Bioproducts Processing, vol. 90, no. 1, pp. 37–42, 2012.
[9]
D. F. Silva, C. S. Fávaro-Trindade, G. A. Rocha, and M. Thomazini, “Microencapsulation of lycopene by gelatin-pectin complex coacervation,” Journal of Food Processing and Preservation, vol. 36, no. 2, pp. 185–190, 2012.
[10]
X.-Y. Qv, Z.-P. Zeng, and J.-G. Jiang, “Preparation of lutein microencapsulation by complex coacervation method and its physicochemical properties and stability,” Food Hydrocolloids, vol. 25, no. 6, pp. 1596–1603, 2011.
[11]
C. Thies, Complex Coacervation. How To Make Microcapsules, Lecture and Laboratory Manual, 1995.
[12]
A. Lamprecht, U. F. Sch?fer, and C.-M. Lehr, “Characterization of microcapsules by confocal laser scanning microscopy: structure, capsule wall composition and encapsulation rate,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 49, no. 1, pp. 1–9, 2000.
[13]
A. S. Prata, M. H. A. Zanin, M. I. Ré, and C. R. F. Grosso, “Release properties of chemical and enzymatic crosslinked gelatin-gum Arabic microparticles containing a fluorescent probe plus vetiver essential oil,” Colloids and Surfaces B, vol. 67, no. 2, pp. 171–178, 2008.
[14]
G. A. Rocha, M. A. Trindade, F. M. Netto, and C. S. Fávaro-Trindade, “Microcapsules of a casein hydrolysate: production, characterization, and application in protein bars,” Food Science and Technology International, vol. 15, no. 4, pp. 407–413, 2009.
[15]
D. B. Rodriguez-Amaya, A Guide to Carotenoid Analysis in Food, ILSI Press, Washington, DC, USA, 2001.
[16]
A. B. Santos, C. S. Fávaro-Trindade, and C. R. F. Grosso, “Functionality of microencapsulated paprika oleoresin in arabic gum and rice starch/gelatin,” Pesquisa Agropecuária Brasileira, vol. 41, no. 2, pp. 351–354, 2006.
[17]
C. Schmitt, C. Sanchez, F. Thomas, and J. Hardy, “Complex coacervation between β-lactoglobulin and acacia gum in aqueous medium,” Food Hydrocolloids, vol. 13, no. 6, pp. 483–496, 1999.
[18]
D. V. Mendanha, S. E. M. Ortiz, C. S. Fávaro-Trindade, A. Mauri, E. S. Monterrey-Quintero, and M. Thomazini, “Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin,” Food Research International, vol. 42, no. 8, pp. 1099–1104, 2009.
[19]
C. S. Fávaro-Trindade, S. C. Pinho, and G. A. Rocha, “Microencapsula??o de ingredientes alimentícios,” Brazilian Journal of Food Technology, vol. 11, no. 2, pp. 103–112, 2008.
[20]
A. R. Bachtsi and C. Kiparissides, “Synthesis and release studies of oil-containing poly (vinyl alcohol) microcapsules prepared by coacervation,” Journal of Controlled Release, vol. 38, no. 1, pp. 49–58, 1996.
[21]
F. M. Menger, A. V. Peresypkin, K. L. Caran, and R. P. Apkarian, “Sponge morphology in an elementary coacervate,” Langmuir, vol. 16, no. 24, pp. 9113–9116, 2000.
[22]
A. Lamprecht, U. Sch?fer, and C.-M. Lehr, “Influences of process parameters on preparation of microparticle used as a carrier system for Ω-3 unsaturated fatty acid ethyl esters used in supplementary nutrition,” Journal of Microencapsulation, vol. 18, no. 3, pp. 347–357, 2001.
[23]
K. Nakagawa, S. Iwamoto, M. Nakajima, A. Shono, and K. Satoh, “Microchannel emulsification using gelatin and surfactant-free coacervate microencapsulation,” Journal of Colloid and Interface Science, vol. 278, no. 1, pp. 198–205, 2004.
[24]
S. Leclercq, K. R. Harlander, and G. A. Reineccius, “Formation and characterization of microcapsules by complex coacervation with liquid or solid aroma cores,” Flavour and Fragrance Journal, vol. 24, no. 1, pp. 17–24, 2009.
[25]
M. P. Nori, C. S. Fávaro-Trindade, S. M. Alencar, M. Thomazini, J. C. C. Balieiro, and C. J. C. Castillo, “Microencapsulation of propolis extract by complex coacervation,” LWT: Food Science and Technology, vol. 44, no. 2, pp. 429–435, 2011.
[26]
M. E. Rodríguez-Huezo, R. Pedroza-Islas, L. A. Prado-Barragán, C. I. Beristain, and E. J. Vernon-Carter, “Microencapsulation by spray drying of multiple emulsions containing carotenoids,” Journal of Food Science, vol. 69, no. 7, pp. E351–E359, 2004.
[27]
D. B. Rodriguez-Amaya, “Effects of processing and storage on food carotenoids,” Sight and Life Newsletter, vol. 3, pp. 25–35, 2002.