全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Enhanced Electrocatalytic Activity of Pt Particles Supported on Reduced Graphene Oxide/Poly(3,4-ethylenedioxythiophene) RGO/PEDOT Composite towards Ethanol Oxidation

DOI: 10.1155/2013/501824

Full-Text   Cite this paper   Add to My Lib

Abstract:

Catalysts in fuel cells are normally platinum based because platinum exhibits high electrocatalytic activity towards ethanol oxidation in acidic medium. However, bulk Pt is expensive and rare in nature. To reduce the consumption of Pt, a support material or matrix is needed to disperse Pt on its surface as micro- or nanoparticles with potential application as anode material in direct ethanol fuel cells (DEFCs). In this study, a composite material consisting of platinum particles dispersed on reduced graphene oxide/poly(3,4-ethylenedioxythiophene) (RGO/PEDOT) support was electrochemically prepared for ethanol oxidation in sulfuric acid electrolyte. PEDOT, a conductive polymer, was potentiodynamically polymerized from the corresponding monomer, 0.10?M EDOT in 0.10?M HClO4 electrolyte. The PEDOT-modified electrode was used as a substrate for exfoliated graphene oxide (EGO) which was prepared by electrochemical exfoliation of graphite from carbon rod of spent batteries and subsequently reduced to form RGO. The Pt/RGO/PEDOT composite gave the highest electrocatalytic activity with an anodic current density of 2688.7?mA·cm?2 at E?=?0.70?V (versus Ag/AgCl) towards ethanol oxidation compared to bare Pt electrode and other composites. Scanning electron microscopy (SEM) revealed the surface morphology of the hybrid composites while energy dispersive X-ray (EDX) confirmed the presence of all the elements for the Pt/RGO/PEDOT composite. 1. Introduction Fuel cells are basically open thermodynamic systems that operate on the basis of electrochemical reactions and consume reactant from an external source, simply its fuel. In the recent years, proton exchange membrane fuel cells (PEMFCs) have been extensively studied and emerged as one of the potential systems, which not only provide clean energy but also offer good commercial feasibility and portability [1]. Direct alcohol fuel cell (DAFC) is a variety of PEMFCs which uses alcohols such as methanol and ethanol. Alcohols have low molecular weight and can be stored in dilute concentrations as fuel has been noted for portability and transportation applications. Direct ethanol fuel cells (DEFCs) have spurred more and more interest in recent years due to ethanol’s intrinsic advantages such as low toxicity, renewability, and its easy production in great quantity by the fermentation from sugar-containing raw materials [2]. Moreover, catalysts such as precious metals and nonprecious metals are needed for the oxidation of ethanol. Platinum (Pt) has currently been regarded as the best catalyst for fuel cell electrochemical

References

[1]  S. Du, “A facile route for polymer electrolyte membrane fuel cell electrodes with in situ grown Pt nanowires,” Journal of Power Sources, vol. 195, no. 1, pp. 289–292, 2010.
[2]  J. Wang, S. Wasmus, and R. F. Savinell, “Evaluation of ethanol, 1-propanol, and 2-propanol in a direct oxidation polymer-electrolyte fuel cell: a real-time mass spectrometry study,” Journal of the Electrochemical Society, vol. 142, no. 12, pp. 4218–4224, 1995.
[3]  C. Lamy, S. Rousseau, E. M. Belgsir, C. Coutanceau, and J.-M. Léger, “Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts,” Electrochimica Acta, vol. 49, no. 22-23, pp. 3901–3908, 2004.
[4]  E. M. Gacutan, M. I. Climaco, G. J. Telan et al., “Nanostructured carbon-supported Pd electrocatalysts for ethanol oxidation: synthesis and characterization,” Advances in Natural Sciences, vol. 3, Article ID 045016, 5 pages, 2012.
[5]  H. Y. Hsu and B. J. Tongol, “Electrochemical and surface characteristics of carbon-supported PtSn electrocatalysts for ethanol electro-oxidation: possible application for inkjet ink formulations,” Advances in Natural Sciences, vol. 4, Article ID 015012, 6 pages, 2013.
[6]  E. Antolini and E. R. Gonzalez, “Polymer supports for low temperature fuel cell catalysts,” Applied Catalysis A, vol. 365, no. 1, pp. 1–19, 2009.
[7]  S. Patra and N. Munichandraiah, “Electrooxidation of methanol on pt-modified conductive polymer PEDOT,” Langmuir, vol. 25, no. 3, pp. 1732–1738, 2009.
[8]  F. Jiang, Z. Yao, R. Yue et al., “Electrocatalytic activity of Pd nanoparticles supported on PEDOT/graphene hybrid for ethanol oxidation,” Journal of Solid State Electrochemistry, vol. 17, pp. 1039–1047, 2013.
[9]  A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183–191, 2007.
[10]  X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Letters, vol. 8, no. 1, pp. 323–327, 2008.
[11]  H. Y. C. Hsu, L. D. S. Lapitan Jr., H. M. Fulo, and B. J. V. Tongol, “Enhanced electrocatalytic behavior of Pt metallic particles dispersed on poly(3,4-ethylenedioxythiophene)-modified Au electrode towards ethanol oxidation,” Acta Manilana, vol. 58, pp. 1–9, 2010.
[12]  L. A. S. Morenos, J. L. Garcia, L. D. S. Lapitan Jr., H. M. Fulo, and B. J. V. Tongol, “Development of fuel cell electrocatalysts based on poly(3,4-ethylenedioxythiophene) (PEDOT)—modified Pt/metallic particles composite film: electrochemical and surface studies,” Acta Manilana, vol. 59, pp. 1–9, 2011.
[13]  F. Jiang, Z. Yao, R. Yue et al., “Electrochemical fabrication of long term stable Pt-loaded PEDOT/graphene composites for ethanol oxidation,” International Journal of Hydrogen Energy, vol. 37, no. 19, pp. 14085–14093, 2012.
[14]  W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” Journal of the American Chemical Society, vol. 80, no. 6, p. 1339, 1958.
[15]  C. Su, A. Lu, Y. Xu, F. Chen, A. Khlobystov, and L. Li, “High quality thin graphene films from fast electrochemical exfoliation,” ACS Nano, vol. 5, no. 3, pp. 2332–2339, 2011.
[16]  B. Saner, F. Din?, and Y. Yürüm, “Utilization of multiple graphene nanosheets in fuel cells: 2. The effect of oxidation process on the characteristics of graphene nanosheets,” Fuel, vol. 90, no. 8, pp. 2609–2616, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133