全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Loranthus pulverulentus: A Potent Source of Natural Antioxidants and Alternative Medicine

DOI: 10.1155/2013/250739

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study was designed to evaluate the antioxidant potential of Loranthus pulverulentus. Stem bark, leaves, and seeds of Loranthus pulverulentus were extracted in methanol:water (90?:?10) and partitioned with n-hexane, chloroform, ethyl acetate, and n-butanol successively using partition chromatography. Total phenolic contents and antioxidant potential were checked using standard protocols. Total phenolic contents of all extracts were determined, using Folin–Ciocalteu reagent, and ranged between 151 ± 2.1 and 396 ± 1.6 for stem bark, 137 ± 0.9 and 430 ± 2.2 for, and 39 ± 0.6 and 231 ± 1.7 for seeds. The antioxidant potential of extracts was evaluated; namely, DPPH, FRAP, and total antioxidant models. The ethyl acetate extract of stem-bark, leaves, and seeds showed the highest activity in DPPH (94.5 ± 2.1%, 96.30 ± 0.9%, and 92.30 ± 1.1%, IC50 15.9 ± 0.5?μg, 14.5 ± 0.8, and 102.7 ± 1.3, resp.), FRAP (7.7 ± 0.6, 7.5 ± 0.7 and 6.6 ± 0.7, resp.), and total antioxidant (0.95 ± 0.09, 1.19 ± 0.09, and 0.686 ± 0.08, resp.). Strong correlations were observed between total phenols versus total antioxidant activity, DPPH, and FRAP with R2 values ranging from 0.8185 to 0.9951 (stem-bark), 0.6728 to 0.8648 (leaves), and 0.8658 to 0.9910 (seed) which indicated that phenolic contents are the major constituents responsible for antioxidant activity. 1. Introduction Plants are important for a healthier life, because they offer us medicines, which are safe, effective and cause no side effects. They play a fundamental role in our lives mainly due to their unusual collection of diverse classes of biochemicals with a variety of biological activities [1, 2]. Many medicinal plants contain antioxidants such as polyphenols, which can play an important role in capturing and neutralizing free radicals and quenching singlet and triplet oxygen. Many of these phytochemicals possess significant antioxidant capacities that are associated with lower occurrence and lower mortality rates of several human diseases [3]. Antioxidants are substances which counteract free radicals and prevent the damage caused by them. These can greatly reduce the adverse damage caused by oxidants by crumbling them before they react with biologic targets, preventing chain reactions, or preventing the activation of oxygen to highly reactive products [4]. The use of natural antioxidants for the treatment of free radical induced pathologies has certain advantages, because these agents produce no side effects, possess low toxicity, and effectively act upon the main factors damaging the vascular system. Plants are

References

[1]  C. M. Cotton, Ethnobotany: Principals and Applications, John Wiley & Sons, Chichister, UK, 1996.
[2]  J. Buckingham, Dictionary of Natural Compounds, Chapman and Hall, london, UK, 1999.
[3]  A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, and N. Vidal, “Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds,” Food Chemistry, vol. 97, no. 4, pp. 654–660, 2006.
[4]  A. Azzi, K. J. A. Davies, and F. Kelly, “Free radical biology—terminology and critical thinking,” FEBS Letters, vol. 558, no. 1–3, pp. 3–6, 2004.
[5]  B. Barlow, “Provisional key to the genera of Loranthaceae and Viscaceae of the flora Malesiana region,” Flora Malesiana Bulletin, vol. 10, pp. 335–338, 1991.
[6]  R. K.-Y. Zee-Cheng, “Anticancer research on Loranthaceae plants,” Drugs of the Future, vol. 22, no. 5, pp. 519–530, 1997.
[7]  M. Ajaib, Z.-U. Khan, N. Khan, and M. Wahab, “Ethnobotanical studies on useful shrubs of district Kotli, Azad Jammu & Kashmir, Pakistan,” Pakistan Journal of Botany, vol. 42, no. 3, pp. 1407–1415, 2010.
[8]  S. G. Khattak, S. N. Gilani, and M. Ikram, “Antipyretic studies on some indigenous Pakistani medicinal plants,” Journal of Ethnopharmacology, vol. 14, no. 1, pp. 45–51, 1985.
[9]  D. Shahwar, S.-U. Shafiq-ur-Rehman, N. Ahmad, S. Ullah, and M. A. Raza, “Antioxidant activities of the selected plants from the family Euphorbiaceae, Lauraceae, Malvaceae and Balsaminaceae,” African Journal of Biotechnology, vol. 9, no. 7, pp. 1086–1096, 2010.
[10]  D. Shahwar, S. U. Rehman, and M. A. Raza, “Acetyl cholinesterase inhibition potential and antioxidant activities of ferulic acid isolated from Impatiens bicolor Linn,” Journal of Medicinal Plant Research, vol. 4, no. 3, pp. 260–266, 2010.
[11]  A. B. Aliyu, H. Ibrahim, A. M. Musa, M. A. Ibrahim, A. O. Oyewale, and J. O. Amupitan, “In vitro evaluation of antioxidant activity of Anisopus mannii N.E. Br,” African Journal of Biotechnology, vol. 9, no. 16, pp. 2437–2441, 2010.
[12]  J. M. Awika, L. W. Rooney, X. Wu, R. L. Prior, and L. Cisneros-Zevallos, “Screening methods to measure antioxidant activity of Sorghum (Sorghum bicolor) and Sorghum products,” Journal of Agricultural and Food Chemistry, vol. 51, no. 23, pp. 6657–6662, 2003.
[13]  L. Yu, S. Haley, J. Perret, M. Harris, J. Wilson, and M. Qian, “Free radical scavenging properties of wheat extracts,” Journal of Agricultural and Food Chemistry, vol. 50, no. 6, pp. 1619–1624, 2002.
[14]  R. Van den Berg, G. R. M. M. Haenen, H. van den Berg, W. van der Vijgh, and A. Bast, “The predictive value of the antioxidant capacity of structurally related flavonoids using the trolox equivalent antioxidant capacity (TEAC) assay,” Food Chemistry, vol. 70, no. 3, pp. 391–395, 2000.
[15]  B. ?zcelik, J. H. Lee, and D. B. Min, “Effects of light, oxygen and pH on the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method to evaluate antioxidants,” Journal Agricultural and Food Chemistry, vol. 68, pp. 487–490, 2003.
[16]  J. R. Soares, T. C. P. Dinis, A. P. Cunha, and L. M. Almeida, “Antioxidant activities of some extracts of Thymus zygis,” Free Radical Research, vol. 26, no. 5, pp. 469–478, 1997.
[17]  A. D. Boveris, M. Galleano, and S. Puntarulo, “In vivo supplementation with Ginkgo biloba protects membranes against lipid peroxidation,” Phytotherapy Research, vol. 21, no. 8, pp. 735–740, 2007.
[18]  K. L. Fritz, C. M. Seppanen, M. S. Kurzer, and A. Csallany Saari, “The in vivo antioxidant activity of soybean isoflavones in human subjects,” Nutrition Research, vol. 23, no. 4, pp. 479–487, 2003.
[19]  Y. S. Velioglu, G. Mazza, L. Gao, and B. D. Oomah, “Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products,” Journal of Agricultural and Food Chemistry, vol. 46, no. 10, pp. 4113–4117, 1998.
[20]  J. Vaya and M. Aviram, “Nutritional antioxidants mechanisms of action, analysis of activities and medical applications,” Current Medicinal Chemistry, vol. 1, pp. 99–117, 2001.
[21]  D. Ami?, D. Davidovi?-Ami?, D. Be?lo, V. Rastija, B. Lu?i?, and N. Trinajsti?, “SAR and QSAR of the antioxidant activity of flavonoids,” Current Medicinal Chemistry, vol. 14, no. 7, pp. 827–845, 2007.
[22]  T. Sawa, M. Nakao, T. Akaike, K. Ono, and H. Maeda, “Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: implications for the anti-tumor-promoter effect of vegetables,” Journal of Agricultural and Food Chemistry, vol. 47, no. 2, pp. 397–402, 1999.
[23]  M. Jun, U. Tohru, L. Jianzhang, and F. Takeshi, “Identification and evaluation of antioxidant activities of bamboo extracts,” Forestry Studies in China, vol. 6, pp. 1–5, 2004.
[24]  G. C. Yen and H. Y. Chen, “Antioxidant activity of various tea extracts in relation to their antimutagenicit,” Journal Agricultural and Food Chemistry, vol. 46, pp. 849–854, 1995.
[25]  O. Erol-Dayi, M. Pekmez, M. Bona, A. Aras-Perk, and N. Arda, “Total phenolic contents, antioxidant activities and cytotoxicity of three Centaurea species: C. calcitrapa subsp. calcitrapa, C. ptosimopappa and C. spicata,” Free Radical Antioxidant, vol. 1, pp. 31–36, 2011.
[26]  E. Middleton Jr., C. Kandaswami, and T. C. Theoharides, “The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer,” Pharmacological Reviews, vol. 52, no. 4, pp. 673–751, 2000.
[27]  L. Packer, G. Rimbach, and F. Virgili, “Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol,” Free Radical Biology and Medicine, vol. 27, no. 5-6, pp. 704–724, 1999.
[28]  J. Vaya and M. Aviram, “Nutritional antioxidants mechanisms of action, analysis of activities and medical applications,” Current Medicinal Chemistry, vol. 1, no. 1, pp. 99–117, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133