全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Modeling Studies of Piperidine Derivatives as New Acetylcholinesterase Inhibitors against Neurodegenerative Diseases

DOI: 10.1155/2013/278742

Full-Text   Cite this paper   Add to My Lib

Abstract:

Neurodegenerative disorders are related to the progressive loss of structure or function and, eventually, death of neurons. These processes are responsible for diseases like Parkinson’s, Alzheimer’s, and Huntington’s, and the main molecular target for the drug design against these illnesses today is the enzyme acetylcholinesterase (AChE). Following this line, in the present work, we applied docking techniques to study some piperidine derivative inhibitors of AChE and further propose structures of six new AChE inhibitors as potential new drugs against neurodegenerative disorders. The best inhibitor proposed was submitted to additional molecular dynamics simulations steps. 1. Introduction Skeletal muscle ontogenesis is a complex and multistep process during which myoblasts, the skeletal muscle progenitors, proliferate, migrate, and fuse into myotubes [1]. The latter are then innervated, and the nerve endings govern the final phases of maturation of myotubes into the functional skeletal muscle fibres responsive to nerve inputs [2]. Regular transmission of these inputs is directly related to the action of acetylcholinesterase (AChE), an enzyme present in the neuromuscular junctions and responsible for the hydrolysis of the neurotransmitter acetylcholine. In some neurodegenerative disorders, like myastimiahenia gravis or Parkinson’s disease, inhibition of AChE is a fundamental therapeutic step [1, 3]. Several clinical studies on AChE inhibitors, such as physostigmine and tacrine, have revealed interesting results. However, side effects and oral activity restrict the application of these agents as effective drugs. In this context, recent findings show that piperidine derivatives are promising AChE inhibitors able to overcome the unfavorable side effect profile and poor pharmacokinetics related to the aforementioned compounds. Despite great importance, the study of the interaction between piperidine derivatives and AChE has received remarkably little attention. The interactions of AChE with its inhibitors, however, are not fully understood yet and still deserve investigation. The drug design of rational therapy requires insight into the molecular mechanisms underlying the AChE-inhibitor interactions under physiological conditions in order to propose structures of new and more efficient inhibitors. In this line, molecular mechanics based methods involving docking studies and also molecular dynamics simulations are suitable tools to adjust ligands at target sites and to estimate interaction energy (affinity) [4]. Nowadays, that is a well-established technique

References

[1]  K. Shimizu, H. Fujita, and E. Nagamori, “Evaluation systems of generated forces of skeletal muscle cell-based bio-actuators,” Journal of Bioscience and Bioengineering, vol. 115, pp. 115–121, 2013.
[2]  C. H. Tengan, G. S. Rodrigues, and R. O. Godinho, “Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function,” International Journal of Molecular Sciences, vol. 13, pp. 17160–17184, 2012.
[3]  K. S. Matos, E. F. F. da Cunha, A. da Silva Gon?alves et al., “First principles calculations of thermodynamics and kinetic parameters and molecular dynamics simulations of acetylcholinesterase reactivators: can mouse data provide new insights into humans?” Journal of Biomolecular Structure and Dynamics, vol. 30, pp. 546–558, 2012.
[4]  A. D. Favia, O. Nicolotti, A. Stefanachi, F. Leonetti, and A. Carotti, “Computational methods for the design of potent aromatase inhibitors,” Expert Opinion on Drug Discovery, vol. 8, pp. 395–409, 2013.
[5]  D. Mucs and R. A. Bryce, “Computational methods for the design of potent aromatase inhibitors,” Expert Opinion on Drug Discovery, vol. 8, no. 3, pp. 263–276, 2013.
[6]  M. S. Caetano, T. C. Ramalho, T. G. Vieira, A. D. Goncalves, D. T. Mancini, and E. F. F. da Cunha, “Bonding, structure, and stability of clusters: some surprising results from an experimental and theoretical investigation in gas phase,” Journal of Chemistry, vol. 2013, Article ID 362894, 8 pages, 2013.
[7]  SPARTAN, “Version 10.0,” Wavefunction, Irvine, Calif, USA.
[8]  D. C. Young, Computational Chemistry: A Practical Guide For Applying Techniques To Real-World Problems., Wiley-Interscience, New York, NY, USA.
[9]  C. J. Cramer and D. G. Truhlar, “General parameterized SCF model for free energies of solvation in aqueous solution,” Journal of the American Chemical Society, vol. 113, no. 22, pp. 8305–8311, 1991.
[10]  C. J. Cramer and D. G. Truhlar, “An SCF solvation model for the hydrophobie effect and absolute free energies of aqueous solvation,” Science, vol. 256, no. 5054, pp. 213–217, 1992.
[11]  C. J. Cramer and D. G. Truhlar, “AM1-SM2 and PM3-SM3 parameterized SCF solvation models for free energies in aqueous solution,” Journal of Computer-Aided Molecular Design, vol. 6, no. 6, pp. 629–666, 1992.
[12]  G. Kryger, I. Silman, and J. L. Sussman, “Structure of acetylcholinesterase complexed with E2020 (Ariceptρ): implications for the design of new anti-Alzheimer drugs,” Structure, vol. 7, no. 3, pp. 297–307, 1999.
[13]  R. Thomsen and M. H. Christensen, “MolDock: a new technique for high-accuracy molecular docking,” Journal of Medicinal Chemistry, vol. 49, no. 11, pp. 3315–3321, 2006.
[14]  E. N. Trifono, “Vocabulary of definitions of life suggests a definition,” Journal of Biomolecular Structure and Dynamics, vol. 29, pp. 259–263, 2011.
[15]  M. Rooman, E. Cau?t, J. Liévin, and R. Wintjens, “Conformations consistent with charge migration observed in DNA and RNA X-ray structures,” Journal of Biomolecular Structure and Dynamics, vol. 28, no. 6, pp. 949–954, 2011.
[16]  A. J. Hopfinger, S. Wang, J. S. Tokarski et al., “Construction of 3D-QSAR models using the 4D-QSAR analysis formalism,” Journal of the American Chemical Society, vol. 119, no. 43, pp. 10509–10524, 1997.
[17]  M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian, Pittsburgh, Pa, USA, 1998.
[18]  E. M. F. Muri, M. Gomes Jr., J. S. Costa et al., “N-t-Boc-amino acid esters of isomannide potential—inhibitors of serine proteases,” Amino Acids, vol. 27, no. 2, pp. 153–159, 2004.
[19]  D. J. Gustin, P. Mattei, P. Kast et al., “Heavy atom isotope effects reveal a highly polarized transition state for chorismate mutase,” Journal of the American Chemical Society, vol. 121, no. 8, pp. 1756–1757, 1999.
[20]  B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GRGMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation,” Journal of Chemical Theory and Computation, vol. 4, no. 3, pp. 435–447, 2008.
[21]  A. A. S. T. Ribeiro, B. A. C. Horta, and R. B. De Alencastro, “MKTOP: a program for automatic construction of molecular topologies,” Journal of the Brazilian Chemical Society, vol. 19, no. 7, pp. 1433–1435, 2008.
[22]  C. Oostenbrink, A. Villa, A. E. Mark, and W. F. van Gunsteren, “A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6,” Journal of Computational Chemistry, vol. 25, no. 13, pp. 1656–1676, 2004.
[23]  D. van der SPOEL, A. R. Buuren, and E. APOL, GROMACS User Manual Version 3. 0. Groningen, University of Groningen, Department of Biophysical Chemistry, 2001.
[24]  K. S. Matos, D. T. Mancini, E. F. F. da Cunha, K. Kuca, T. C. C. Franca, and T. C. Ramalho, “Molecular aspects of the reactivation process of acetylcholinesterase inhibited by cyclosarin,” Journal of Brazilian Chemical Society, vol. 22, pp. 1999–2004, 2011.
[25]  H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, Interaction Models for Water in Relation to Protein Hydration, Reidel, Dordrecht, The Netherlands, 1981.
[26]  W. Humphrey, A. Dalke, and K. Schulten, “VMD: visual molecular dynamics,” Journal of Molecular Graphics, vol. 14, no. 1, pp. 33–38, 1996.
[27]  N. Guex and M. C. Peitsch, “SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling,” Electrophoresis, vol. 18, no. 15, pp. 2714–2723, 1997.
[28]  P. M. Edwards, “Origin 7.0: scientific graphing and data analysis software,” Journal of Chemical Information and Computer Sciences, vol. 42, no. 5, p. 1270, 2002.
[29]  R. Koradi, M. Billeter, and K. Wüthrich, “MOLMOL: a program for display and analysis of macromolecular structures,” Journal of Molecular Graphics, vol. 14, no. 1, pp. 51–55, 1996.
[30]  W. L. DeLano and S. Bromberg, PyMOL USer’S Guide, DeLano Scientific LLC, San Francisco, Ca, USA, 2004.
[31]  R. A. Friesner, J. L. Banks, R. B. Murphy et al., “Glide:a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy,” Journal of Medicinal Chemistry, vol. 47, no. 7, pp. 1739–1749, 2004.
[32]  F. Maseras and K. Morokuma, “IMOMM-A new integrated ab initio molecular mechanics geometry optimization scheme of equilibrium structures and transition-states,” Journal of Computational Chemistry, vol. 16, pp. 1170–1179, 1995.
[33]  T. C. Ramalho, E. F. F. da Cunha, and R. B. De Alencastro, “Solvent effects on13C and15N shielding tensors of nitroimidazoles in the condensed phase: a sequential molecular dynamics/quantum mechanics study,” Journal of Physics Condensed Matter, vol. 16, no. 34, pp. 6159–6170, 2004.
[34]  S. H. Vosko, L. Wilk, and M. Nusair, “Accurate spin-dependent electron liquid correlation energies for local spin-density calculations—critical analysis,” Canadian Journal of Chemistry, vol. 58, pp. 1200–1211, 1980.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133