Iron oxide nanoparticles were prepared by microemulsion method and evaluated in Fischer-Tropsch synthesis. The precipitation process was performed in a single-phase microemulsion operating region. Different HLB values of surfactant were prepared by mixing of sodium dodecyl sulfate (SDS) and Triton X-100. Transmission electron microscopy (TEM), surface area, pore volume, average pore diameter, pore size distribution, and XRD patterns were used to analyze size distribution, shape, and structure of precipitated hematite nanoparticles. Furthermore, temperature programmed reduction (TPR) and catalytic activity in CO hydrogenation were implemented to assess the performance of the samples. It was found that methane and CO2 selectivity and also the syngas conversion increased as the HLB value of surfactant decreased. In addition, the selectivity to heavy hydrocarbons and chain growth probability ( ) decreased by decreasing the catalyst crystal size. 1. Introduction Nanoscale materials exhibited novel properties including quantum size effect on photochemistry, nonlinear optical properties of semiconductor and new catalytic properties of metallic nanoparticles [1]. Therefore, synthesis of nanoparticles is of a great interest field during the past few years. As compared to their bulk counterparts, nanoparticles often have superior or even new catalytic properties following from their nanometer size [2]. Hence, the size of the nanoparticles is pivotal in determining the catalytic properties and understanding how size may affect the catalytic properties remains a central goal in nanocatalysis research [3]. Many methods have been reported for preparation of nanoparticles [2, 3]. Preparation of metallic nanoparticles using microemulsion has been well established [4–7]. Due to the specific structure of the microemulsion system, it was expected as a suitable environment for producing small metal nanoparticles with narrow size distribution. A microemulsion is defined as a system of water, oil, and amphiphile (surfactant) [4–7]. In some respects, microemulsions can be considered as small-scale versions of emulsions, that is, droplet type dispersions either of oil-in-water (o/w) or of water-in-oil (w/o), with a size range in the order of 5?50?nm in drop radius. In the hydrophilic interior of these droplets, a certain amount of water-soluble material can be dissolved, for example, transition metal salts that then serve as precursor(s) for the final metal particles. As for simple aqueous systems, microemulsion formation is dependent on surfactant type and structure. A
References
[1]
A. T. Bell, “The impact of nanoscience on heterogeneous catalysis,” Science, vol. 299, no. 5613, pp. 1688–1691, 2003.
[2]
J. Y. Ying, “Design and synthesis of nanostructured catalysts,” Chemical Engineering Science, vol. 61, no. 5, pp. 1540–1548, 2006.
[3]
X. Zhou, W. Xu, G. Liu, D. Panda, and P. Chen, “Size dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level,” Journal of the American Chemical Society, vol. 132, no. 1, pp. 138–146, 2010.
[4]
P. Kumar and K. L. Mittal, Handbook of Microemulsions: Science and Technology, Marcel Dekker, New York, NY, USA, 1999.
[5]
S. Eriksson, U. Nylén, S. Rojas, and M. Boutonnet, “Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis,” Applied Catalysis A, vol. 265, no. 2, pp. 207–219, 2004.
[6]
I. Capek, “Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions,” Advances in Colloid and Interface Science, vol. 110, no. 1-2, pp. 49–74, 2004.
[7]
G. Guo, Y. Sun, Z. Wang, and H. Guo, “Preparation of hydroxyapatite nanoparticles by reverse microemulsion,” Ceramics International, vol. 31, no. 6, pp. 869–872, 2005.
[8]
T. Herranz, S. Rojas, F. J. Pérez-Alonso, M. Ojeda, P. Terreros, and J. L. G. Fierro, “Hydrogenation of carbon oxides over promoted Fe-Mn catalysts prepared by the microemulsion methodology,” Applied Catalysis A, vol. 311, pp. 66–75, 2006.
[9]
A. Sarkar, D. Seth, A. K. Dozier, J. K. Neathery, H. H. Hamdeh, and B. H. Davis, “Fischer-Tropsch synthesis: morphology, phase transformation and particle size growth of nano-scale particles,” Catalysis Letters, vol. 117, no. 1-2, pp. 1–17, 2007.
[10]
A. Nakhaei Pour, S. Taghipoor, M. Shekarriz, S. M. K. Shahri, and Y. Zamani, “Fischer-tropsch synthesis with Fe/Cu/La/SiO2 nano-structured catalyst,” Journal of Nanoscience and Nanotechnology, vol. 9, no. 7, pp. 4425–4429, 2009.
[11]
A. Nakhaei Pour, M. R. Housaindokht, S. F. Tayyari, and J. Zarkesh, “Fischer-Tropsch synthesis by nano-structured iron catalyst,” Journal of Natural Gas Chemistry, vol. 19, no. 3, pp. 284–292, 2010.
[12]
A. Nakhaei Pour, M. R. Housaindokht, S. F. Tayyari, and J. Zarkesh, “Effect of nano-particle size on product distribution and kinetic parameters of Fe/Cu/La catalyst in Fischer-Tropsch synthesis,” Journal of Natural Gas Chemistry, vol. 19, no. 2, pp. 107–116, 2010.
[13]
D. Y. Murzin, “Size-dependent heterogeneous catalytic kinetics,” Journal of Molecular Catalysis A, vol. 315, no. 2, pp. 226–230, 2010.
[14]
D. Y. Murzin, “Thermodynamic analysis of nanoparticle size effect on catalytic kinetics,” Chemical Engineering Science, vol. 64, no. 5, pp. 1046–1052, 2009.
[15]
A. Nakhaei Pour, S. M. K. Shahri, H. R. Bozorgzadeh, Y. Zamani, A. Tavasoli, and M. A. Marvast, “Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer-Tropsch synthesis,” Applied Catalysis A, vol. 348, no. 2, pp. 201–208, 2008.
[16]
A. Nakhaei Pour, Y. Zamani, A. Tavasoli, S. M. K. Shahri, and S. A. Taheri, “Study on products distribution of iron and iron-zeolite catalysts in Fischer-Tropsch synthesis,” Fuel, vol. 87, no. 10-11, pp. 2004–2012, 2008.
[17]
A. Nakhaei Pour, M. R. Housaindokht, S. F. Tayyari, J. Zarkesh, and M. R. Alaei, “Deactivation studies of Fischer-Tropsch synthesis on nano-structured iron catalyst,” Journal of Molecular Catalysis A, vol. 330, no. 1-2, pp. 112–120, 2010.
[18]
H. I. Chen and H. Y. Chang, “Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents,” Colloids and Surfaces A, vol. 242, pp. 61–69, 2004.
[19]
A. Ramirez and L. Sierra, “Simulation of nitrogen sorption processes in materials with cylindrical mesopores: hysteresis as a thermodynamic and connectivity phenomenon,” Chemical Engineering Science, vol. 61, no. 13, pp. 4233–4241, 2006.
[20]
M. E. Dry, “The Fischer-Tropsch synthesis,” in Catalysis: Science and Technology, J. R. Anderson and M. Boudart, Eds., Springer, New York, NY, USA, 1981.
[21]
G. P. van der Laan and A. A. C. M. Beenackers, “Kinetics and selectivity of the Fischer-Tropsch synthesis: a literature review,” Catalysis Reviews: Science and Engineering, vol. 41, no. 3-4, pp. 255–318, 1999.