Our previous studies on antiproliferative properties of genistein derivatives substituted at C7 hydroxyl group of the ring A revealed some compounds with antimitotic properties. The aim of this work was to synthesize their analogues substituted at the 4′-position of the ring B in genistein and to define their antiproliferative mechanism of action in selected cancer cell lines in vitro. C4′-substituted glycoconjugates were obtained in a three-step procedure: (1) alkylation with an ω-bromoester; (2) deacylation; (3) Ferrier-type rearrangement glycosylation with acylated glycals. Biological effects including antiproliferative effects of the compounds, cell cycle, DNA lesions (ATM activation, H2A.X phosphorylation, and micronuclei formation), and autophagy were studied in human cancer cell lines. Some of the tested derivatives potently inhibited cell proliferation. The presence of a substituent at the 4′-position of the ring B in genistein correlated to a p53-independent G1 cell-cycle arrest. The derivatives substituted at C4′ did not induce DNA lesions and appeared to be nongenotoxic. The tested compounds induced autophagy and caused remarkable decrease of cell volume. 1. Introduction Flavonoids are naturally occurring plant polyphenols found in abundance in fruits, vegetables, and plant-derived beverages [1]. Epidemiological studies have shown that the intake of certain vegetables, fruits, and tea in the daily diet provides effective cancer prevention. This class of compounds have been found to arrest cell-cycle progression either at G1/S or at G2/M boundaries [2] and inhibit cell proliferation. The inhibition of cell-cycle is a result of inhibition of different cell-cycle kinases or activation of cell-cycle control checkpoints [3–5]. Beneficial influence of genistein on human health, resulting from its interaction with multiple molecular targets [6, 7] combined with opportunities of chemical functionalization, makes this molecule very attractive as a lead compound. The structure of genistein molecule enables different types of derivatizations, that is, modification of the isoflavone skeleton or manipulation functional groups around the isoflavone core, which may improve its affinity towards molecular targets [8]. There are many examples of genistein derivatives which show better pharmacological characteristics comparing to the parent compound genistein, including altered binding affinities to estrogen receptors (ERs) [9] and enhanced antiproliferative activities [10–14]. Among genistein derivatives showing enhanced antiproliferative activity are
References
[1]
J. A. M. Kyle and G. G. Duthie, “Flavonoids in foods,” in Flavonoids: Chemistry, Biochemistry, and Applications, M. ?. Andersen, K. R. Markham, and S. Quideau, Eds., pp. 219–262, Taylor & Francis, Boca Raton, Fla, USA, 2006.
[2]
F. Casagrande and J.-M. Darbon, “Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK1,” Biochemical Pharmacology, vol. 61, no. 10, pp. 1205–1215, 2001.
[3]
G. Zapata-Torres, F. Opazo, C. Salgado et al., “Effects of natural flavones and flavonols on the kinase activity of Cdk5,” Journal of Natural Products, vol. 67, no. 3, pp. 416–420, 2004.
[4]
K.-L. Chang, M.-L. Kung, N.-H. Chow, and S.-J. Su, “Genistein arrests hepatoma cells at G2/M phase: involvement of ATM activation and upregulation of p21waf1/cip1 and Wee1,” Biochemical Pharmacology, vol. 67, no. 4, pp. 717–726, 2004.
[5]
G. I. Salti, S. Grewal, R. R. Mehta, T. K. Das Gupta, A. W. Boddie Jr., and A. I. Constantinou, “Genistein induces apoptosis and topoisomerase II-mediated DNA breakage in colon cancer cells,” European Journal of Cancer, vol. 36, no. 6, pp. 796–802, 2000.
[6]
S. Banerjee, Y. Li, Z. Wang, and F. H. Sarkar, “Multi-targeted therapy of cancer by genistein,” Cancer Letters, vol. 269, no. 2, pp. 226–242, 2008.
[7]
A. Rusin and Z. Krawczyk, “Genistein derivatization—from a dietary supplement to a pharmaceutical agent,” in Soybean and Health, H. El-Shemy, Ed., pp. 253–282, InTech, Zagreb, Croatia, 2011.
[8]
A. Rusin, Z. Krawczyk, G. Grynkiewicz, A. Gogler, J. Zawisza-Pucha?ka, and W. Szeja, “Synthetic derivatives of genistein, their properties and possible applications,” Acta Biochimica Polonica, vol. 57, no. 1, pp. 23–34, 2010.
[9]
S. Djiogue, D. Njamen, M. Halabalaki et al., “Estrogenic properties of naturally occurring prenylated isoflavones in U2OS human osteosarcoma cells: structure-activity relationships,” Journal of Steroid Biochemistry and Molecular Biology, vol. 120, no. 4-5, pp. 184–191, 2010.
[10]
A. Rusin, A. Gogler, A. Gruca et al., “Genistein derivatives potentiate inhibition of cancer cells growth by irradiation,” FEBS Journal, vol. 276, supplement 1, pp. 340–341, 2009.
[11]
A. Rusin, J. Zawisza-Pucha?ka, K. Kujawa et al., “Synthetic conjugates of genistein affecting proliferation and mitosis of cancer cells,” Bioorganic and Medicinal Chemistry, vol. 19, no. 1, pp. 295–305, 2011.
[12]
K. Polkowski, J. Popio?kiewicz, P. Krzeczyński et al., “Cytostatic and cytotoxic activity of synthetic genistein glycosides against human cancer cell lines,” Cancer Letters, vol. 203, no. 1, pp. 59–69, 2004.
[13]
L. N. Zhang, Z. P. Xiao, H. Ding et al., “Synthesis and cytotoxic evaluation of novel 7-O-modified genistein derivatives,” Chemistry & Biodiversity, vol. 4, no. 2, pp. 248–255, 2007.
[14]
G.-X. Hu, B.-H. Zhao, Y.-H. Chu et al., “Effects of genistein and equol on human and rat testicular 3Β-hydroxysteroid dehydrogenase and 17Β-hydroxysteroid dehydrogenase 3 activities,” Asian Journal of Andrology, vol. 12, no. 4, pp. 519–526, 2010.
[15]
A. Rusin, M. Chrubasik, K. Papaj, G. Grynkiewicz, and W. Szeja, “C-Glycosidic genistein conjugates and their antiproliferative activity,” Journal of Chemistry, vol. 2013, Article ID 951392, 14 pages, 2013.
[16]
A. Gogler-Piglowska, A. Rusin, D. Bochenek, and Z. Krawczyk, “Aneugenic effects of the genistein glycosidic derivative substituted at C7 with the unsaturated disaccharide,” Cell Biology and Toxicology, vol. 28, no. 5, pp. 331–342, 2012.
[17]
A. Rusin, A. Gogler, M. G?owala-Kosińska et al., “Unsaturated genistein disaccharide glycoside as a novel agent affecting microtubules,” Bioorganic and Medicinal Chemistry Letters, vol. 19, no. 17, pp. 4939–4943, 2009.
[18]
M. Metzler and E. Pfeiffer, “Effects of estrogens on microtubule polymerization in vitro: correlation with estrogenicity,” Environmental Health Perspectives, vol. 103, no. 7, pp. 21–22, 1995.
[19]
S. Mukherjee, B. R. Acharya, B. Bhattacharyya, and G. Chakrabarti, “Genistein arrests cell cycle progression of A549 cells at the G 2/M phase and depolymerizes interphase microtubules through binding to a unique site of tubulin,” Biochemistry, vol. 49, no. 8, pp. 1702–1712, 2010.
[20]
P. T. Lewis, K. W?h?l?, A. Hoikkala et al., “Synthesis of antioxidant isoflavone fatty acid esters,” Tetrahedron, vol. 56, no. 39, pp. 7805–7810, 2000.
[21]
W. Szeja, J. Pucha?ka, P. ?wierk, A. B. Hendrich, and G. Grynkiewicz, “Selective alkylation of genistein and daidzein,” Chemistry & Biology Interface, vol. 3, pp. 95–106, 2013.
[22]
F. Bunz, P. M. Hwang, C. Torrance et al., “Disruption of p53 in human cancer cells alters the responses to therapeutic agents,” The Journal of Clinical Investigation, vol. 104, no. 3, pp. 263–269, 1999.
[23]
A. Zajkowicz and M. Rusin, “The activation of the p53 pathway by the AMP mimetic AICAR is reduced by inhibitors of the ATM or mTOR kinases,” Mechanisms of Ageing and Development, vol. 132, no. 11-12, pp. 543–551, 2011.
[24]
M. Klaude, S. Eriksson, J. Nygren, and G. Ahnstr?m, “The comet assay: mechanisms and technical considerations,” Mutation Research, vol. 363, no. 2, pp. 89–96, 1996.
[25]
M. Wojewódzka, I. Buraczewska, and M. Kruszewski, “A modified neutral comet assay: elimination of lysis at high temperature and validation of the assay with anti-single-stranded DNA antibody,” Mutation Research, vol. 518, no. 1, pp. 9–20, 2002.
[26]
M. Fenech, “The in vitro micronucleus technique,” Mutation Research, vol. 455, no. 1-2, pp. 81–95, 2000.
[27]
K. V. Gurova, O. W. Rokhlin, A. V. Budanov et al., “Cooperation of two mutant p53 alleles contributes to Fas resistance of prostate carcinoma cells,” Cancer Research, vol. 63, no. 11, pp. 2905–2912, 2003.
[28]
J. Bartek and J. Lukas, “Mammalian G1- and S-phase checkpoints in response to DNA damage,” Current Opinion in Cell Biology, vol. 13, no. 6, pp. 738–747, 2001.
[29]
F. Schmidt, C. B. Knobbe, B. Frank, H. Wolburg, and M. Weller, “The topoisomerase II inhibitor, genistein, induces G2/M arrest and apoptosis in human malignant glioma cell lines,” Oncology Reports, vol. 19, no. 4, pp. 1061–1066, 2008.
[30]
U. M. Moll and O. Petrenko, “The MDM2-p53 interaction,” Molecular Cancer Research, vol. 1, no. 14, pp. 1001–1008, 2003.
[31]
D. G. Hardie, “AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function,” Genes & Development, vol. 25, no. 18, pp. 1895–1908, 2011.
[32]
G. Kroemer, G. Mari?o, and B. Levine, “Autophagy and the integrated stress response,” Molecular Cell, vol. 40, no. 2, pp. 280–293, 2010.
[33]
E. T. W. Bampton, C. G. Goemans, D. Niranjan, N. Mizushima, and A. M. Tolkovsky, “The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes,” Autophagy, vol. 1, no. 1, pp. 23–36, 2005.
[34]
M. Oblak, M. Randic, and T. Solmajer, “Quantitative structure-activity relationship of flavonoid analogues. 3. Inhibition of p56lck protein tyrosine kinase,” Journal of Chemical Information and Computer Sciences, vol. 40, no. 4, pp. 994–1001, 2000.
[35]
Z. Nikolovska-Coleska, L. Suturkova, K. Dorevski, A. Krbavcic, and T. Solmajer, “Quantitative structure-activity relationship of flavonoid inhibitors of p56(lck) protein tyrosine kinase: a Classical/Quantum chemical approach,” Quantitative Structure-Activity Relationships, vol. 17, no. 1, pp. 7–13, 1998.
[36]
K. Machida and K. Osawa, “On the flavonoid constituents from the peels of citrus-hassaku hort ex tanaka,” Chemical & Pharmaceutical Bulletin, vol. 37, no. 4, pp. 1092–1094, 1989.
[37]
M.-H. Pan, W.-J. Chen, S.-Y. Lin-Shiau, C.-T. Ho, and J.-K. Lin, “Tangeretin induces cell-cyle G1 arrest through inhibiting cyclin-dependent kinases 2 and 4 activities as well as elevating Cdk inhibitors p21 and p27 in human colorectal carcinoma cells,” Carcinogenesis, vol. 23, no. 10, pp. 1677–1684, 2002.
[38]
M. F. Aguero, M. M. Facchinetti, Z. Sheleg, and A. M. Senderowicz, “Phenoxodiol, a novel isoflavone, induces G1 arrest by specific loss in cyclin-dependent kinase 2 activity by p53-independent induction of p21WAF1/CIP1,” Cancer Research, vol. 65, no. 8, pp. 3364–3373, 2005.
[39]
C. B. Klein and A. A. King, “Genistein genotoxicity: critical considerations of in vitro exposure dose,” Toxicology and Applied Pharmacology, vol. 224, no. 1, pp. 1–11, 2007.
[40]
O. J. Bandele, S. J. Clawson, and N. Osheroff, “Dietary polyphenols as topoisomerase II poisons: B ring and C ring substituents determine the mechanism of enzyme-mediated DNA cleavage enhancement,” Chemical Research in Toxicology, vol. 21, no. 6, pp. 1253–1260, 2008.
[41]
O. J. Bandele and N. Osheroff, “The efficacy of topoisomerase II-targeted anticancer agents reflects the persistence of drug-induced cleavage complexes in cells,” Biochemistry, vol. 47, no. 45, pp. 11900–11908, 2008.