全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Difficulties in Evaluating Lyapunov Exponents for Lie Governed Dynamics

DOI: 10.1155/2013/587548

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider here an environment in which the fact that a semiquantum Hamiltonian obeys SU(2) symmetries poses serious difficulties if one wants to compute Lyapunov exponents. 1. Introduction An extreme complexity of phase space's trajectories that are very sensitive to small changes in the initial conditions is the signature of classical chaos, accompanied by (i) an ostensibly random allotment of phase points on a Poincare's surface of section and (ii) an exponentially rapid separation of two initially close trajectories [1]. Instead, it is clear that the state vector of a closed quantum system cannot exhibit chaotic motion in Hilbert space. The interaction between a quantum system and a classical one may instead lead to authentic chaotic motion of the quantum component, a phenomenon known as semiquantum chaos [2, 3]. Remark that the vocable semiquantum is reserved to systems for which neither the quantum part nor the classical part would be chaotic by themselves. If chaos ensues, this happens because of the classical-quantum coupling. Semiquantumness implies that one part is treated classically and the other one in quantal fashion [3]. We consider here an environment in which the semiquantum Hamiltonian obeys symmetries and consider the difficulties that arise if one wants to compute Lyapunov exponents [4]. The paper is organized as follows: Section 2 deals with some background materials [5], while Section 3 explicates Hamiltonian details. 2. Background Consider a system that possesses both quantum and classic degrees of freedom, with a coupling amongst them, that we call semiquantum [3, 6–10]. The associated Hamiltonian is of the general form [11] where , , and are the quantum, classical, and interaction parts, respectively. There exist many situations in which a semiquantum description has been attempted [6, 9, 12]. Porter [6] made an exhaustive compilation of physical systems for which this kind of description is relevant. One may highlight vibrating quantum billiards as a useful abstraction of the ensuing semiquantum dynamics [13]. Indeed, many semiquantum Hamiltonians are found in the literature [3, 14–23]. In this work, via the Maximum Entropy Principle (MEP) vantage point [5], we show that serious difficulties arise, in the case of these systems, if one wants to compute Lyapunov exponents, because the quantum degrees of freedom of the system must abide by the generalized uncertainty principle (GUP) [24] which in the case of an underlying Lie algebra becomes a dynamic invariant. In turn, the other dynamic invariants (the energy) involve both

References

[1]  A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics, Springer, New York, NY, USA, 1992.
[2]  R. Bluemel and W. P. Reinhardt, Chaos in Atomic Physics, Cambridge University Press, Cambridge, Mass, USA, 1997.
[3]  L. E. Ballentine, “Is semiquantum chaos real?” Physical Review E, vol. 63, no. 5, Article ID 056204, 7 pages, 2001.
[4]  G. Benettin, L. Galgani, and J.-M. Strelcyn, “Kolmogorov entropy and numerical experiments,” Physical Review A, vol. 14, no. 6, pp. 2338–2345, 1976.
[5]  C. M. Sarris and A. N. Proto, “Generalized metric phase space for quantum systems and the uncertainty principle,” Physica A, vol. 377, no. 1, pp. 33–42, 2007.
[6]  M. A. Porter, “Nonadiabatic dynamics in semiquantal physics,” Reports on Progress in Physics, vol. 64, no. 9, pp. 1165–1189, 2001.
[7]  R. Blumel and B. Esser, “Quantum chaos in the Born-Oppenheimer approximation,” Physical Review Letters, vol. 72, no. 23, pp. 3658–3661, 1994.
[8]  H. Schanz and B. Esser, “Mixed quantum-classical versus full quantum dynamics: coupled quasiparticle-oscillator system,” Physical Review A, vol. 55, no. 5, pp. 3375–3387, 1997.
[9]  A. M. Kowalski, A. Plastino, and A. N. Proto, “Semiclassical model for quantum dissipation,” Physical Review E, vol. 52, no. 1, pp. 165–177, 1995.
[10]  J. Ma and R. K. Yuan, “Semiquantum Chaos,” Journal of the Physical Society of Japan, vol. 66, no. 8, pp. 2302–2307, 1997.
[11]  A. M. Kowalski, M. T. Martin, J. Nu?ez, A. Plastino, and A. N. Proto, “Quantitative indicator for semiquantum chaos,” Physical Review A, vol. 58, no. 3, pp. 2596–2599, 1998.
[12]  A. M. Kowalski, A. Plastino, and A. N. Proto, “A semiclassical statistical model for quantum dissipation,” Physica A, vol. 236, no. 3-4, pp. 429–447, 1997.
[13]  M. A. Porter and R. L. Liboff, “Vibrating quantum billiards on Riemannian manifolds,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 11, no. 9, pp. 2305–2315, 2001.
[14]  T. C. Blum and H.-T. Elze, “Semiquantum chaos in the double well,” Physical Review E, vol. 53, no. 4, pp. 3123–3133, 1996.
[15]  L. L. Bonilla and F. Guinea, “Collapse of the wave packet and chaos in a model with classical and quantum degrees of freedom,” Physical Review A, vol. 45, no. 11, pp. 7718–7728, 1992.
[16]  R. I. Cukier and M. Morillo, “Comparison between quantum and approximate semiclassical dynamics of an externally driven spin-harmonic oscillator system,” Physical Review A, vol. 61, no. 2, 4 pages, 2000.
[17]  A. K. Pattanayak and W. C. Schieve, “Semiquantal dynamics of fluctuations: ostensible quantum chaos,” Physical Review Letters, vol. 72, no. 18, pp. 2855–2858, 1994.
[18]  A. M. Kowalski, M. T. Martin, J. Nu?ez, A. Plastino, and A. N. Proto, “Semiquantum chaos and the uncertainty principle,” Physica A, vol. 276, no. 1, pp. 95–108, 2000.
[19]  A. M. Kowalski, M. T. Martin, A. Plastino, A. N. Proto, and O. A. Rosso, “Wavelet statistical complexity analysis of the classical limit,” Physics Letters, Section A, vol. 311, no. 2-3, pp. 180–191, 2003.
[20]  F. Cooper, J. F. Dawson, D. Meredith, and H. Shepard, “Semiquantum chaos,” Physical Review Letters, vol. 72, no. 9, pp. 1337–1340, 1994.
[21]  A. M. Kowalski, A. Plastino, and A. N. Proto, “Classical limits,” Physics Letters, Section A, vol. 297, no. 3-4, pp. 162–172, 2002.
[22]  C. M. Sarris and A. N. Proto, “Information entropy and nonlinear semiquantum dynamics,” International Journal of Bifurcation and Chaos, vol. 19, no. 10, pp. 3473–3484, 2009.
[23]  A. M. Kowalski, M. T. Martin, A. Plastino, and A. N. Proto, “Classical limit and chaotic regime in a semi-quantum Hamiltonian,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 13, no. 8, pp. 2315–2325, 2003.
[24]  C. M. Sarris, F. Caram, and A. N. Proto, “The uncertainty principle as invariant of motion for time-dependent Hamiltonians,” Physics Letters, Section A, vol. 324, no. 1, pp. 1–8, 2004.
[25]  Y. Alhassid and R. D. Levine, “Entropy and chemical change. III. The maximal entropy (subject to constraints) procedure as a dynamical theory,” The Journal of Chemical Physics, vol. 67, no. 10, 1977.
[26]  Y. Alhassid and R. D. Levine, “Connection between the maximal entropy and the scattering theoretic analyses of collision processes,” Phys. Rev. A, vol. 18, no. 1, pp. 89–116, 1978.
[27]  D. Otero, A. Plastino, A. N. Proto, and G. Zannoli, “Ehrenfest theorem and information theory,” Physical Review A, vol. 26, no. 3, pp. 1209–1217, 1982.
[28]  E. Merzbaher, Quantum Mechanics, Wiley, 1963.
[29]  W.-K. Tung, Group Theory in Physics, World Scientific Publishing, Singapore, 1985.
[30]  W. Cheney and D. Kincaid, Métodos Numéricos y Computación, CENGAE Learning, Mexico, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133