全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Finite-Time Combination-Combination Synchronization for Hyperchaotic Systems

DOI: 10.1155/2013/304643

Full-Text   Cite this paper   Add to My Lib

Abstract:

A new type of finite-time synchronization with two drive systems and two response systems is presented. Based on the finite-time stability theory, step-by-step control and nonlinear control method, a suitable controller is designed to achieve finite-time combination-combination synchronization among four hyperchaotic systems. Numerical simulations are shown to verify the feasibility and effectiveness of the proposed control technique. 1. Introduction As a new subject in 1980s, chaos almost covers all the fields of science. It is known that chaos is an interesting nonlinear phenomenon which may lead to irregularity and unpredictability in the dynamic system, and it has been intensively studied in the last three decades. Since Pecora and Carroll proposed the PC method to synchronize two chaotic systems in 1990 [1, 2], the study of synchronization of chaotic systems has been widely investigated due to their potential applications in various fields, for instance, in chemical reactions, biological systems, and secure communication. Over the past decades, a variety of control approaches such as adaptive control [3], linear feedback control [4], active control [5], and backstepping control [6] have been proposed for various types of synchronization, which include complete synchronization [7], projective synchronization [8, 9], general synchronization [10], lag synchronization [11], and novel compound synchronization [12]. Most of the aforementioned works are based on the synchronization scheme which consists of one drive system and one response system and can be seen as one-to-one system. However, we found it not secure and flexible enough in many real world applications, for instance, in secure communication. Recently, Runzi et al. presented a new type of synchronization with two drive systems and one response system [13]. Then, Sun et al. extended multi-to-one system to multi-to-two systems and reported a new type of synchronization, namely, combination-combination synchronization, where synchronization is achieved between two drive systems and two response systems [14]. The type of synchronization can improve the security of communication; for instance, we can split the transmitted signals into several parts, then load each part in different drive systems, and then restore it to the original signals by combining the received signals of different response systems correctly. Notice that the mentioned literatures mainly investigated the asymptotic synchronization of chaotic systems. However, in the view of practical application, optimizing the synchronization

References

[1]  L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990.
[2]  L. M. Pecora, T. L. Carroll, G. A. Johnson, D. J. Mar, and J. F. Heagy, “Fundamentals of synchronization in chaotic systems, concepts, and applications,” Chaos, vol. 7, no. 4, pp. 520–543, 1997.
[3]  T. L. Liao and S. H. Tsai, “Adaptive synchronization of chaotic systems and its application to secure communications,” Chaos, solitons and fractals, vol. 11, no. 9, pp. 1387–1396, 2000.
[4]  M. T. Yassen, “Controlling chaos and synchronization for new chaotic system using linear feedback control,” Chaos, Solitons and Fractals, vol. 26, no. 3, pp. 913–920, 2005.
[5]  Y. Lei, W. Xu, and H. Zheng, “Synchronization of two chaotic nonlinear gyros using active control,” Physics Letters A, vol. 343, no. 1–3, pp. 153–158, 2005.
[6]  S. Tong, C. Li, and Y. Li, “Fuzzy adaptive observer backstepping control for MIMO nonlinear systems,” Fuzzy Sets and Systems, vol. 160, no. 19, pp. 2755–2775, 2009.
[7]  C. Yao, Q. Zhao, and J. Yu, “Complete synchronization induced by disorder in coupled chaotic lattices,” Physics Letters A, vol. 377, no. 5, pp. 370–377, 2013.
[8]  J. Sun, Y. Shen, G. Zhang, et al., “General hybrid projective complete dislocated synchronization with non-derivative and derivative coupling based on parameter identification in several chaotic and hyperchaotic systems,” Chinese Physics B, vol. 22, no. 4, pp. 040508–040518, 2013.
[9]  J. Sun, Y. Shen, and G. Zhang, “Transmission projective synchronization of multi-systems with non-delayed and delayed coupling via impulsive control,” Chaos, vol. 22, no. 4, pp. 043107–043116, 2012.
[10]  H. G. Enjieu Kadji and R. Yamapi, “General synchronization dynamics of coupled Van der Pol-Duffing oscillators,” Physica A, vol. 370, no. 2, pp. 316–328, 2006.
[11]  Y. Shen and J. Wang, “Robustness analysis of global exponential stability of recurrent neural networks in the presence of time delays and random disturbances,” IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 1, pp. 87–96, 2012.
[12]  J. Sun, Y. Shen, Q. Yin, et al., “Compound synchronization of four memristor chaotic oscillator systems and secure communication,” Chaos, vol. 23, no. 1, pp. 013140–013149, 2013.
[13]  R. Luo, Y. Wang, and S. Deng, “Combination synchronization of three classic chaotic systems using active backstepping design,” Chaos, vol. 21, no. 4, pp. 043114–043119, 2011.
[14]  J. Sun, Y. Shen, G. Zhang, et al., “Combination-combination synchronization among four identical or different chaotic systems,” Nonlinear Dynamics, vol. 73, no. 3, pp. 1211–1222, 2013.
[15]  H. Wang, Z. Han, Q. Xie, and W. Zhang, “Finite-time chaos synchronization of unified chaotic system with uncertain parameters,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 5, pp. 2239–2247, 2009.
[16]  Y. Yang and X. Wu, “Global finite-time synchronization of a class of the non-autonomous chaotic systems,” Nonlinear Dynamics, vol. 70, no. 1, pp. 197–208, 2012.
[17]  U. E. Vincent and R. Guo, “Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller,” Physics Letters A, vol. 375, no. 24, pp. 2322–2326, 2011.
[18]  R. Luo and Y. Wang, “Finite-time stochastic combination synchronization of three different chaotic systems and its application in secure communication,” Chaos, vol. 22, no. 2, pp. 023109–023118, 2012.
[19]  P. He, S. Ma, and T. Fan, “Finite-time mixed outer synchronization of complex networks with coupling time-varying delay,” Chaos, vol. 22, no. 4, pp. 043151–043161, 2012.
[20]  Y. X. Li, W. K. S. Tang, and G. R. Chen, “Generating hyperchaos via state feedback control,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 15, no. 10, pp. 3367–3375, 2005.
[21]  X. Wang and M. Wang, “Hyperchaotic Lorenz system,” Acta Physica Sinica, vol. 56, no. 9, pp. 5136–5141, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133